HOME

TheInfoList



OR:

In
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, a discipline within
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The te ...
, a special group is a finite group of
prime power In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, ...
order that is either
elementary abelian In mathematics, specifically in group theory, an elementary abelian group (or elementary abelian ''p''-group) is an abelian group in which every nontrivial element has order ''p''. The number ''p'' must be prime, and the elementary abelian gr ...
itself or of class 2 with its derived group, its center, and its Frattini subgroup all equal and elementary abelian . A special group of order ''p''''n'' that has class 2 and whose derived group has order ''p'' is called an
extra special group In group theory, a branch of abstract algebra, extraspecial groups are analogues of the Heisenberg group over finite fields whose size is a prime. For each prime ''p'' and positive integer ''n'' there are exactly two (up to isomorphism) extraspeci ...
.


References

*{{Citation , last1=Gorenstein , first1=D. , author1-link=Daniel Gorenstein , title=Finite groups , url=http://www.ams.org/bookstore-getitem/item=CHEL-301-H , publisher=Chelsea Publishing Co. , location=New York , edition=2nd , isbn=978-0-8284-0301-6 , mr=569209 , year=1980 Finite groups P-groups