HOME

TheInfoList



OR:

The sorption pump is a
vacuum pump A vacuum pump is a device that draws gas molecules from a sealed volume in order to leave behind a partial vacuum. The job of a vacuum pump is to generate a relative vacuum within a capacity. The first vacuum pump was invented in 1650 by Otto ...
that creates a
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
by adsorbing molecules on a very porous material like
molecular sieve A molecular sieve is a material with pores (very small holes) of uniform size. These pore diameters are similar in size to small molecules, and thus large molecules cannot enter or be adsorbed, while smaller molecules can. As a mixture of molec ...
which is cooled by a
cryogen In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
, typically
liquid nitrogen Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is wi ...
. The ultimate pressure is about 10−2
mbar The bar is a metric unit of pressure, but not part of the International System of Units (SI). It is defined as exactly equal to 100,000  Pa (100 kPa), or slightly less than the current average atmospheric pressure on Earth at sea le ...
. With special techniques this can be lowered till 10−7 mbar. The main advantages are the absence of oil or other contaminants, low cost and vibration free operation because there are no
moving parts Machines include both fixed and moving parts. The moving parts have controlled and constrained motions. Moving parts are machine components excluding any moving fluids, such as fuel, coolant or hydraulic fluid. Moving parts also do not include ...
. The main disadvantages are that it cannot operate continuously and cannot effectively pump
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
,
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
and
neon Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypt ...
, all gases with lower condensation temperature than liquid nitrogen. The main application is as a
roughing pump A roughing pump is any vacuum pump (typically mechanical) used to initially evacuate a vacuum system, as a first stage towards achieving high vacuum or ultra high vacuum. The term "roughing pump" derives from the vacuum range it works in, "rough v ...
for a sputter-ion pump in
ultra-high vacuum Ultra-high vacuum (UHV) is the vacuum regime characterised by pressures lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of a gas molecule is greater than approximately ...
experiments, for example in
surface physics Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid– gas interfaces, solid– vacuum interfaces, and liquid– gas interfaces. It includes t ...
.


Construction

A sorption pump is usually constructed in stainless steel,
aluminium Aluminium (aluminum in AmE, American and CanE, Canadian English) is a chemical element with the Symbol (chemistry), symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately o ...
or
borosilicate glass Borosilicate glass is a type of glass with silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficients of thermal expansion (≈3 × 10−6 K−1 at 20 °C), m ...
. It can be a simple
Pyrex Pyrex (trademarked as ''PYREX'' and ''pyrex'') is a brand introduced by Corning Inc. in 1915 for a line of clear, low-thermal-expansion borosilicate glass used for laboratory glassware and kitchenware. It was later expanded to include kitchenw ...
flask filled with molecular sieve or an elaborate metal construction consisting of a metal flask containing perforated tubing and heat-conducting fins. A
pressure relief valve A relief valve or pressure relief valve (PRV) is a type of safety valve used to control or limit the pressure in a system; pressure might otherwise build up and create a process upset, instrument or equipment failure, or fire. The pressure is re ...
can be installed. The design only influences the pumping speed and not the ultimate pressure that can be reached. The design details are a trade-off between fast cooling using heat conducting fins and high
gas conductance Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or c ...
using perforated tubing. The typical molecular sieve used is a synthetic
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These ...
with a pore diameter around 0.4
nanometer 330px, Different lengths as in respect to the molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re, ...
( Type 4A ) and a surface area of about 500 m2/g. The sorption pump contains between 300 g and 1.2 kg of molecular sieve. A 15-liter system will be pumped down to about 10−2 mbar by 300 g molecular sieve.''Modern Vacuum Practice'', Nigel S. Harris, 3rd ed. 2005, chapter 11.


Operation

The sorption pump is a cyclic pump and its cycle has 3 phases: sorption, desorption and regeneration. In the
sorption Sorption is a physical and chemical process by which one substance becomes attached to another. Specific cases of sorption are treated in the following articles: ; Absorption: "the incorporation of a substance in one state into another of a dif ...
phase the pump is actually used to create a vacuum. This is achieved by cooling the pump body to low temperatures, typically by immersing it in a
Dewar flask A vacuum flask (also known as a Dewar flask, Dewar bottle or thermos) is an insulating storage vessel that greatly lengthens the time over which its contents remain hotter or cooler than the flask's surroundings. Invented by Sir James Dew ...
filled with liquid nitrogen. Gases will now either
condense Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor to ...
or be
adsorbed Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which ...
by the large surface of the molecular sieve. In the
desorption Desorption is the physical process where a previously adsorbed substance is released from a surface. This happens when a molecule gains enough energy to overcome the activation barrier of the bounding energy that keeps it in the surface. There ...
phase the pump is allowed warm up to room temperature and the gases escape through the pressure relief valve or other opening to the atmosphere. If the pump has been used to pump toxic, flammable or other dangerous gasses one has to be careful to vent safely into the atmosphere as all gases pumped during the sorption phase will be released during the desorption phase. In the regeneration phase the pump body is heated to 300 °C to drive off water vapor that does not desorb at room temperature and accumulates in the molecular sieve. It takes typically 2 hours to fully regenerate a pump. The pump can be used in a cycle of sorption and desorption until it loses too much efficiency and is regenerated or in a cycle where sorption and desorption are always followed by regeneration. After filling a sorption pump with new molecular sieve it should always be regenerated as the new molecular sieve is probably saturated with
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
. Also when a pump is not in use it should be closed off from the atmosphere to prevent water vapor saturation.


Performance improvement

Pumping capacity can be improved by prepumping the system by another simple and clean vacuum pump like a
diaphragm pump A diaphragm pump (also known as a Membrane pump) is a positive displacement pump that uses a combination of the reciprocating action of a rubber, thermoplastic or teflon diaphragm and suitable valves on either side of the diaphragm (check valve, ...
or even a water aspirator or compressed-air
venturi pump A vacuum ejector, or simply ejector is a type of vacuum pump, which produces vacuum by means of the Venturi effect. In an ejector, a working fluid (liquid or gaseous) flows through a jet nozzle into a tube that first narrows and then expands i ...
. Sequential or multistage pumping can be used to attain lower pressures. In this case two or more pumps are connected in parallel to the vacuum vessel. Every pump has a valve to isolate it from the vacuum vessel. At the start of the pump down all valves are open. The first pump is cooled down while the others are still hot. When the first pump has reached its ultimate pressure it is closed off and the next pump is cooled down. Final pressures are in the 10−4 mbar region. What is left is mainly helium because it is almost not pumped at all.''Vacuum Technology'', A. Roth, 3rd ed. 1990, chapter 5.5. The final pressure almost equals the partial pressure of helium in air. A sorption pump does pump all gases effectively with the exception of hydrogen, helium and neon which do not condensate at liquid nitrogen temperatures and are not efficiently adsorbed by the molecular sieves because of their small molecular size. This problem can be solved by purging the vacuum system with dry pure nitrogen before pump down. In purged system with aspirator rough pumping ultimate pressures of 10−4 mbar for a single sorption pump and 10−7 mbar for sequential pumping can be reached.''Building Scientific Apparatus'', John H. Moore et al., 3rd ed. 2003, chapter 3.6. A typical source of dry pure nitrogen would be a liquid nitrogen Dewar head space. It has been suggested''High-Vacuum Technology: A Practical Guide'', Marsbed H. Hablanian, 2nd ed. 1997, chapter 5.8.5. that by applying a dynamic pumping technique hydrogen, helium and neon can also be pumped without resorting to dry nitrogen purging. This is done by precooling the pump with the valve to the vacuum vessel closed. The valve is opened when the pump is cold and the inrush of adsorbable gases will carry all other gases into the pump. The valve is closed before hydrogen, helium or neon can back-migrate into the vacuum vessel. Sequential pumping can also be applied. No final pressures are given. Continuous pumping may be simulated by using two pumps in parallel and letting one pump pump the system while the other pump, temporally sealed-off from the system, is in the desorption phase and venting to the atmosphere. When the pump is well desorbed it is cooled down and reconnected to the system. The other pump is sealed-off and goes into desorption. This becomes a continuous cycle.


References

Vacuum pumps