Soil acidification is the buildup of
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
cation
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s, which reduces the
soil pH
Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the neg ...
. Chemically, this happens when a
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
donor gets added to the soil. The donor can be an
acid
An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
, such as
nitric acid
Nitric acid is an inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into nitrogen oxide, oxides of nitrogen. Most com ...
,
sulfuric acid
Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
, or
carbonic acid
Carbonic acid is a chemical compound with the chemical formula . The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature. The interconversion ...
. It can also be a compound such as
aluminium sulfate
Aluminium sulfate is a salt with the chemical formula, formula . It is soluble in water and is mainly used as a Coagulation (water treatment), coagulating agent (promoting particle collision by neutralizing charge) in the purification of drinking ...
, which reacts in the soil to release protons. Acidification also occurs when
base cations such as
calcium
Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
,
magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
,
potassium
Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
and
sodium
Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
are leached from the soil.
Soil acidification naturally occurs as
lichen
A lichen ( , ) is a hybrid colony (biology), colony of algae or cyanobacteria living symbiotically among hypha, filaments of multiple fungus species, along with yeasts and bacteria embedded in the cortex or "skin", in a mutualism (biology), m ...
s and
algae
Algae ( , ; : alga ) is an informal term for any organisms of a large and diverse group of photosynthesis, photosynthetic organisms that are not plants, and includes species from multiple distinct clades. Such organisms range from unicellular ...
begin to break down rock surfaces. Acids continue with this dissolution as soil develops. With time and weathering, soils become more acidic in natural ecosystems. Soil acidification rates can vary, and increase with certain factors such as
acid rain
Acid rain is rain or any other form of Precipitation (meteorology), precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions (low pH). Most water, including drinking water, has a neutral pH that exists b ...
, agriculture, and pollution.
Causes
Acid rain
Rainfall is naturally
acidic
An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.
The first category of acids are the ...
due to carbonic acid forming from carbon dioxide in the atmosphere. This compound causes rainfall pH to be around 5.0–5.5. When rainfall has a lower pH than natural levels, it can cause rapid acidification of soil.
Sulfur dioxide
Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a colorless gas with a pungent smell that is responsible for the odor of burnt matches. It is r ...
and
nitrogen oxides are precursors of stronger acids that can lead to
acid rain
Acid rain is rain or any other form of Precipitation (meteorology), precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions (low pH). Most water, including drinking water, has a neutral pH that exists b ...
production when they react with water in the atmosphere. These gases may be present in the atmosphere due to natural sources such as lightning and volcanic eruptions, or from
anthropogenic
Anthropogenic ("human" + "generating") is an adjective that may refer to:
* Anthropogeny, the study of the origins of humanity
Anthropogenic may also refer to things that have been generated by humans, as follows:
* Human impact on the enviro ...
emissions.
Basic cations like calcium are leached from the soil as acidic rainfall flows, which allows aluminum and proton levels to increase.
Nitric and sulfuric acids in acid rain and snow can have different effects on the acidification of forest soils, particularly seasonally in regions where a snow pack may accumulate during the winter. Snow tends to contain more nitric acid than sulfuric acid, and as a result, a pulse of nitric acid-rich snow meltwater may leach through high elevation forest soils during a short time in the spring. This volume of water may comprise as much as 50% of the annual precipitation. The nitric acid flush of meltwater may cause a sharp, short term, decrease in the drainage water pH entering groundwater and surface waters. The decrease in pH can solubilize Al
3+ that is toxic to fish, especially newly-hatched fry with immature gill systems through which they pass large volumes of water to obtain O
2 for respiration. As the snow meltwater flush passes, water temperatures rise, and lakes and streams produce more dissolved organic matter; the Al concentration in drainage water decreases and is bound to organic acids, making it less toxic to fish. In rain, the ratio of nitric-to-sulfuric acids decreases to approximately 1:2. The higher sulfuric acid content of rain also may not release as much Al
3+ from soils as does nitric acid, in part due to the retention (adsorption) of SO
42- by soils. This process releases OH
− into soil solution and buffers the pH decrease caused by the added H
+ from both acids. The forest floor organic soil horizons (layers) that are high in organic matter also buffer pH, and decrease the load of H+ that subsequently leaches through underlying mineral horizons.
Biological weathering
Plant roots acidify soil by releasing protons and organic acids so as to chemically weather soil minerals.
Decaying remains of dead plants on soil may also form organic acids which contribute to soil acidification. Acidification from leaf litter on the O-horizon is more pronounced under
coniferous trees such as
pine
A pine is any conifer tree or shrub in the genus ''Pinus'' () of the family Pinaceae. ''Pinus'' is the sole genus in the subfamily Pinoideae.
''World Flora Online'' accepts 134 species-rank taxa (119 species and 15 nothospecies) of pines as cu ...
,
spruce
A spruce is a tree of the genus ''Picea'' ( ), a genus of about 40 species of coniferous evergreen trees in the family Pinaceae, found in the northern temperate and boreal ecosystem, boreal (taiga) regions of the Northern hemisphere. ''Picea'' ...
and
fir
Firs are evergreen coniferous trees belonging to the genus ''Abies'' () in the family Pinaceae. There are approximately 48–65 extant species, found on mountains throughout much of North and Central America, Eurasia, and North Africa. The genu ...
, which return fewer base cations to the soil, rather than under
deciduous trees; however, soil pH differences attributed to vegetation often preexisted that vegetation, and help select for species which tolerate them. Calcium accumulation in existing biomass also strongly affects soil pH - a factor which can vary from species to species.
Parent materials
Certain parent materials also contribute to soil acidification.
Granite
Granite ( ) is a coarse-grained (phanerite, phaneritic) intrusive rock, intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly coo ...
s and their allied
igneous
Igneous rock ( ), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.
The magma can be derived from partial ...
rocks are called "acidic" because they have a lot of free
quartz
Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
, which produces
silicic acid
In chemistry, a silicic acid () is any chemical compound containing the element silicon attached to oxide () and hydroxyl () groups, with the general formula or, equivalently, . Orthosilicic acid is a representative example. Silicic acids are ra ...
on weathering. Also, they have relatively low amounts of calcium and magnesium. Some
sedimentary
Sedimentary rocks are types of rock formed by the cementation of sediments—i.e. particles made of minerals (geological detritus) or organic matter (biological detritus)—that have been accumulated or deposited at Earth's surface. Sedime ...
rocks such as
shale
Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of Clay mineral, clay minerals (hydrous aluminium phyllosilicates, e.g., Kaolinite, kaolin, aluminium, Al2Silicon, Si2Oxygen, O5(hydroxide, OH)4) and tiny f ...
and
coal
Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other Chemical element, elements, chiefly hydrogen, sulfur, oxygen, and nitrogen.
Coal i ...
are rich in
sulfide
Sulfide (also sulphide in British English) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to large families o ...
s, which, when hydrated and oxidized, produce sulfuric acid which is much stronger than silicic acid. Many coal soils are too acidic to support vigorous plant growth, and coal gives off strong precursors to acid rain when it is burned. Marine
clay
Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impuriti ...
s are also sulfide-rich in many cases, and such clays become very acidic if they are drained to an oxidizing state.
Soil amendments
Soil amendments such as chemical
fertilizer
A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Man ...
s can cause soil acidification.
Sulfur
Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
based fertilizers can be highly acidifying, examples include elemental sulfur and iron sulfate while others like
potassium sulfate have no significant effect on
soil pH
Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the neg ...
. While most
nitrogen fertilizers have an acidifying effect, ammonium-based nitrogen fertilizers are more acidifying than other nitrogen sources. Ammonia-based nitrogen fertilizers include
ammonium sulfate,
diammonium phosphate
Diammonium phosphate (DAP; IUPAC name diammonium hydrogen phosphate; chemical formula (NH4)2(HPO4)) is one of a series of water- soluble ammonium phosphate salts that can be produced when ammonia reacts with phosphoric acid.
Solid diammonium ph ...
,
monoammonium phosphate, and
ammonium nitrate
Ammonium nitrate is a chemical compound with the formula . It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, but does not form hydrates. It is predominantly us ...
. Organic nitrogen sources, such as
urea
Urea, also called carbamide (because it is a diamide of carbonic acid), is an organic compound with chemical formula . This amide has two Amine, amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest am ...
and
compost
Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by Decomposition, decomposing plant and food waste, recycling organic materials, and man ...
, are less acidifying. Nitrate sources which have little or no ammonium, such as
calcium nitrate,
magnesium nitrate,
potassium nitrate
Potassium nitrate is a chemical compound with a sharp, salty, bitter taste and the chemical formula . It is a potassium salt of nitric acid. This salt consists of potassium cations and nitrate anions , and is therefore an alkali metal nit ...
, and
sodium nitrate
Sodium nitrate is the chemical compound with the chemical formula, formula . This alkali metal nitrate salt (chemistry), salt is also known as Chile saltpeter (large deposits of which were historically mined in Chile) to distinguish it from ordi ...
, are not acidifying.
Pollution
Acidification may also occur from nitrogen emissions into the air, as the nitrogen may end up deposited into the soil. Animal livestock is responsible for nearly 65 percent of man-made
ammonia
Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
emissions.
Anthropogenic sources of sulfur dioxides and nitrogen oxides play a major role in increase of acid rain production. The use of fossil fuels and motor exhaust are the largest anthropogenic contributors to sulfuric gases and nitrogen oxides, respectively.
Aluminum is one of the few elements capable of making soil more acidic. This is achieved by aluminum taking hydroxide ions out of water, leaving hydrogen ions behind. As a result, the soil is more acidic, which makes it unlivable for many plants. Another consequence of aluminum in soils is aluminum toxicity, which inhibits root growth.
Agriculture management practices
Agriculture managements approaches such as monoculture and chemical fertilization often leads to soil problems such as soil acidification, degradation, and soil-borne diseases, which ultimately have a negative impact on agricultural productivity and sustainability.
Effects
Soil acidification can cause damage to plants and organisms in the soil. In plants, soil acidification results in smaller, less durable roots. Acidic soils sometimes damage the root tips reducing further growth. Plant height is impaired and seed
germination
Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, ...
also decreases. Soil acidification impacts plant health, resulting in reduced cover and lower plant density. Overall, stunted growth is seen in plants. Soil acidification is directly linked to a decline in endangered species of plants.
In the soil, acidification reduces
microbial
A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells. The possible existence of unseen microbial life was suspected from antiquity, with an early attestation in ...
and
macrofaunal diversity.
This can reduce soil structure decline which makes it more sensitive to erosion. There are less nutrients available in the soil, larger impact of toxic elements to plants, and consequences to soil biological functions (such as
nitrogen fixation
Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
). A recent study showed that sugarcane monoculture induces soil acidity, reduces soil fertility, shifts microbial structure, and reduces its activity. Furthermore, most beneficial bacterial genera decreased significantly due to sugarcane monoculture, while beneficial fungal genera showed a reverse trend. Therefore, mitigating soil acidity, improving soil fertility, and soil enzymatic activities, including improved microbial structure with beneficial service to plants and soil, can be an effective measure to develop a sustainable sugarcane cropping system.
At a larger scale, soil acidification is linked to losses in agricultural productivity due to these effects.
Impacts of acidic water and Soil acidification on plants could be minor or in most cases major. In minor cases which do not result in fatality of plant life include; less-sensitive plants to acidic conditions and or less potent acid rain. Also in minor cases the plant will eventually die due to the acidic water lowering the plants natural pH. Acidic water enters the plant and causes important plant minerals to dissolve and get carried away; which ultimately causes the plant to die of lack of minerals for nutrition. In major cases which are more extreme; the same process of damage occurs as in minor cases, which is removal of essential minerals, but at a much quicker rate. Likewise, acid rain that falls on soil and on plant leaves causes drying of the waxy leaf cuticle; which ultimately causes rapid water loss from the plant to the outside atmosphere and results in death of the plant. To see if a plant is being affected by soil acidification, one can closely observe the plant leaves. If the leaves are green and look healthy, the soil pH is normal and acceptable for plant life. But if the plant leaves have yellowing between the veins on their leaves, that means the plant is suffering from acidification and is unhealthy. Moreover, a plant suffering from soil acidification cannot photosynthesize. Drying out of the plant due to acidic water destroy chloroplast organelles. Without being able to photosynthesize a plant cannot create nutrients for its own survival or oxygen for the survival of aerobic organisms; which affects most species of Earth and ultimately end the purpose of the plants existence.
Prevention and management
Soil acidification is a common issue in long-term crop production which can be reduced by lime, organic amendments (e.g., straw and manure) and
biochar application.
In sugarcane, soybean and
corn
Maize (; ''Zea mays''), also known as corn in North American English, is a tall stout Poaceae, grass that produces cereal grain. It was domesticated by indigenous peoples of Mexico, indigenous peoples in southern Mexico about 9,000 years ago ...
crops grown in acidic soils, lime application resulted in nutrient restoration, increase in soil pH, increase in root biomass, and better plant health.
Different management strategies may also be applied to prevent further acidification: using less acidifying fertilizers, considering fertilizer amount and application timing to reduce nitrate-nitrogen leaching, good
irrigation
Irrigation (also referred to as watering of plants) is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has bee ...
management with acid-neutralizing water, and considering the ratio of basic nutrients to nitrogen in harvested crops. Sulfur fertilizers should only be used in responsive crops with a high rate of crop recovery.
By reducing anthropogenic sources of sulfur dioxides and nitrogen oxides, and with air-pollution control measures, let us try to reduce acid rain and soil acidification worldwide.
This has been observed in Ontario, Canada, over several lakes and demonstrated improvements in water pH and alkalinity.
See also
*
*
*
*
References
Further reading
*
*
*
*
*
{{DEFAULTSORT:Soil Acidification
acidification, soil
Environmental issues with soil
Soil degradation