Microbial fuel cell (MFC) is a type of bioelectrochemical
fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
system also known as micro fuel cell that
generates
electric current
An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or
electron donor
In chemistry, an electron donor is a chemical entity that transfers electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. An obsolete definition equated an electron dono ...
) on the anode to oxidized compounds such as
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
(also known as oxidizing agent or
electron acceptor
An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. Electron acceptors are oxidizing agents.
The electron accepting power of an electron acceptor is measured by its redox potential.
In the ...
) on the cathode through an external
electrical circuit
An electrical network is an interconnection of electrical components (e.g., battery (electricity), batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e. ...
. MFCs produce electricity by using the electrons derived from biochemical reactions
catalyzed by bacteria.MFCs can be grouped into two general categories: mediated and unmediated. The first MFCs, demonstrated in the early 20th century, used a mediator: a chemical that transfers electrons from the bacteria in the cell to the anode. Unmediated MFCs emerged in the 1970s; in this type of MFC the bacteria typically have electrochemically active
redox
Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s such as
cytochrome
Cytochromes are redox-active proteins containing a heme, with a central iron (Fe) atom at its core, as a cofactor. They are involved in the electron transport chain and redox catalysis. They are classified according to the type of heme and its ...
s on their outer membrane that can transfer electrons directly to the anode. In the 21st century MFCs have started to find commercial use in wastewater treatment.
History
The idea of using microbes to produce
electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
was conceived in the early twentieth century.
Michael Cressé Potter initiated the subject in 1911. Potter managed to generate electricity from ''
Saccharomyces cerevisiae
''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'', but the work received little coverage. In 1931,
Barnett Cohen created microbial
half
One half is the multiplicative inverse of 2. It is an irreducible fraction with a numerator of 1 and a denominator of 2. It often appears in mathematical equations, recipes and measurements.
As a word
One half is one of the few fractions w ...
fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s that, when connected in series, were capable of producing over 35 volts with only a current of 2
milliamps.
A study by DelDuca et al. used hydrogen produced by the
fermentation
Fermentation is a type of anaerobic metabolism which harnesses the redox potential of the reactants to make adenosine triphosphate (ATP) and organic end products. Organic molecules, such as glucose or other sugars, are catabolized and reduce ...
of glucose by ''
Clostridium butyricum
''Clostridium butyricum'' is a strictly anaerobic endospore-forming Gram-positive butyric acid–producing bacillus subsisting by means of fermentation using an intracellularly accumulated amylopectin-like α- polyglucan (granulose) as a sub ...
'' as the reactant at the anode of a hydrogen and air fuel cell. Though the cell functioned, it was unreliable owing to the unstable nature of
hydrogen production
Hydrogen gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Article in press. Most hydrogen is ''gray hydrogen'' made through steam methane reforming. In this process, ...
by the micro-organisms. This issue was resolved by Suzuki et al. in 1976, who produced a successful MFC design a year later.
In the late 1970s, little was understood about how microbial fuel cells functioned. The concept was studied by Robin M. Allen and later by H. Peter Bennetto. People saw the fuel cell as a possible method for the generation of electricity for developing countries. Bennetto's work, starting in the early 1980s, helped build an understanding of how fuel cells operate and he was seen by many as the topic's foremost authority.
In May 2007, the
University of Queensland
The University of Queensland is a Public university, public research university located primarily in Brisbane, the capital city of the Australian state of Queensland. Founded in 1909 by the Queensland parliament, UQ is one of the six sandstone ...
, Australia completed a prototype MFC as a cooperative effort with
Foster's Brewing. The prototype, a 10 L design, converted
brewery wastewater into carbon dioxide, clean water and electricity. The group had plans to create a pilot-scale model for an upcoming international bio-energy conference.
Definition
A microbial fuel cell (MFC) is a device that
converts
Conversion or convert may refer to:
Arts, entertainment, and media
* ''The Convert'', a 2023 film produced by Jump Film & Television and Brouhaha Entertainment
* "Conversion" (''Doctor Who'' audio), an episode of the audio drama ''Cyberman''
* ...
chemical energy
Chemical energy is the energy of chemical substances that is released when the substances undergo a chemical reaction and transform into other substances. Some examples of storage media of chemical energy include batteries, Schmidt-Rohr, K. (20 ...
to
electrical energy
Electrical energy is the energy transferred as electric charges move between points with different electric potential, that is, as they move across a voltage, potential difference. As electric potential is lost or gained, work is done changing the ...
by the action of
microorganism
A microorganism, or microbe, is an organism of microscopic scale, microscopic size, which may exist in its unicellular organism, single-celled form or as a Colony (biology)#Microbial colonies, colony of cells. The possible existence of unseen ...
s. These electrochemical cells are constructed using either a bioanode and/or a biocathode. Most MFCs contain a membrane to separate the compartments of the anode (where oxidation takes place) and the cathode (where reduction takes place). The electrons produced during oxidation are transferred directly to an electrode or to a
redox
Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
mediator species. The electron flux is moved to the cathode. The charge balance of the system is maintained by ionic movement inside the cell, usually across an ionic membrane. Most MFCs use an organic
electron donor
In chemistry, an electron donor is a chemical entity that transfers electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. An obsolete definition equated an electron dono ...
that is oxidized to produce CO
2, protons, and electrons. Other electron donors have been reported, such as sulfur compounds or hydrogen. The cathode reaction uses a variety of electron acceptors, most often
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
(O
2). Other electron acceptors studied include metal recovery by reduction, water to hydrogen, nitrate reduction, and sulfate reduction.
Applications
Power generation
MFCs are attractive for power generation applications that require only low power, but where replacing batteries may be impractical, such as
wireless sensor network
Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental ...
s.
Wireless sensors powered by microbial fuel cells can then for example be used for
remote monitoring (conservation).
Virtually any organic material could be used to feed the fuel cell, including coupling cells to
wastewater treatment plant
Wastewater treatment is a process which removes and eliminates contaminants from wastewater. It thus converts it into an effluent that can be returned to the water cycle. Once back in the water cycle, the effluent creates an acceptable impact on ...
s. Chemical process wastewater and synthetic wastewater have been used to produce bioelectricity in dual- and single-chamber mediator less MFCs (uncoated graphite electrodes).
Higher power production was observed with a
biofilm
A biofilm is a Syntrophy, syntrophic Microbial consortium, community of microorganisms in which cell (biology), cells cell adhesion, stick to each other and often also to a surface. These adherent cells become embedded within a slimy ext ...
-covered graphite
anode
An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
. Fuel cell emissions are well under regulatory limits. MFCs convert energy more efficiently than standard
internal combustion engine
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
s, which are limited by the
Carnot efficiency
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Nicolas Léonard Sadi Carnot, Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem (thermodynamics), Carnot's theorem, it provides ...
. In theory, an MFC is capable of energy efficiency far beyond 50%. Rozendal produced hydrogen with 8 times less energy input than conventional hydrogen production technologies.
Moreover, MFCs can also work at a smaller scale. Electrodes in some cases need only be 7 μm thick by 2 cm long, such that an MFC can replace a battery. It provides a renewable form of energy and does not need to be recharged.
MFCs operate well in mild conditions, 20 °C to 40 °C and at
pH of around 7
but lack the stability required for long-term medical applications such as in
pacemakers
A pacemaker, also known as an artificial cardiac pacemaker, is an implanted medical device that generates electrical pulses delivered by electrodes to one or more of the chambers of the heart. Each pulse causes the targeted chamber(s) to co ...
.
Power stations can be based on aquatic plants such as algae. If sited adjacent to an existing power system, the MFC system can share its electricity lines.
Education
Soil-based microbial fuel cells serve as educational tools, as they encompass multiple scientific disciplines (microbiology, geochemistry, electrical engineering, etc.) and can be made using commonly available materials, such as soils and items from the refrigerator. Kits for home science projects and classrooms are available.
One example of microbial fuel cells being used in the classroom is in the IBET (Integrated Biology, English, and Technology) curriculum for
Thomas Jefferson High School for Science and Technology
Thomas Jefferson High School for Science and Technology (also known as TJHSST, Thomas Jefferson, or TJ) is a Virginia magnet high school in Fairfax County, Virginia operated by Fairfax County Public Schools. The school occupies the building of t ...
. Several educational videos and articles are also available on the International Society for Microbial Electrochemistry and Technology (ISMET Society)"".
Biosensor
The current generated from a microbial fuel cell is directly proportional to the organic-matter content of wastewater used as the fuel. MFCs can measure the solute concentration of wastewater (i.e., as a
biosensor
A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector.
The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
).
Wastewater is commonly assessed for its
biochemical oxygen demand
Biochemical oxygen demand (also known as BOD or biological oxygen demand) is an analytical parameter representing the amount of dissolved oxygen (DO) consumed by aerobic bacteria growing on the organic material present in a water sample at a s ...
(BOD) values. BOD values are determined by incubating samples for 5 days with proper source of microbes, usually activated sludge collected from wastewater plants.
An MFC-type BOD sensor can provide real-time BOD values. Oxygen and nitrate are interfering preferred electron acceptors over the anode, reducing current generation from an MFC. Therefore, MFC BOD sensors underestimate BOD values in the presence of these electron acceptors. This can be avoided by inhibiting aerobic and nitrate respiration in the MFC using terminal oxidase inhibitors such as
cyanide
In chemistry, cyanide () is an inorganic chemical compound that contains a functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom.
Ionic cyanides contain the cyanide anion . This a ...
and
azide
In chemistry, azide (, ) is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant ...
. Such BOD sensors are commercially available.
The
United States Navy
The United States Navy (USN) is the naval warfare, maritime military branch, service branch of the United States Department of Defense. It is the world's most powerful navy with the largest Displacement (ship), displacement, at 4.5 millio ...
is considering microbial fuel cells for environmental sensors. The use of microbial fuel cells to power environmental sensors could provide power for longer periods and enable the collection and retrieval of undersea data without a wired infrastructure. The energy created by these fuel cells is enough to sustain the sensors after an initial startup time. Due to undersea conditions (high salt concentrations, fluctuating temperatures and limited nutrient supply), the Navy may deploy MFCs with a mixture of salt-tolerant microorganisms that would allow for a more complete utilization of available nutrients. ''
Shewanella oneidensis
''Shewanella oneidensis'' is a bacterium notable for its ability to reduce metal ions and live in environments with or without oxygen. This proteobacterium was first isolated from Lake Oneida, NY in 1988, hence its name.
''Shewanella oneidensi ...
'' is their primary candidate, but other heat- and cold-tolerant ''Shewanella spp'' may also be included.
A first self-powered and autonomous BOD/COD biosensor has been developed and enables detection of organic contaminants in freshwater. The sensor relies only on power produced by MFCs and operates continuously without maintenance. It turns on the alarm to inform about contamination level: the increased frequency of the signal warns about a higher contamination level, while a low frequency informs about a low contamination level.
Biorecovery
In 2010, A. ter Heijne et al. constructed a device capable of producing electricity and reducing Cu
2+ ions to copper metal.
Microbial electrolysis cells have been demonstrated to produce hydrogen.
Wastewater treatment
MFCs are used in water treatment to harvest energy utilizing
anaerobic digestion
Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to Waste management, manage waste or to produce fuels. Mu ...
. The process can also reduce pathogens. However, it requires temperatures upwards of 30 degrees C and requires an extra step in order to convert
biogas
Biogas is a gaseous renewable energy source produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste, Wastewater treatment, wastewater, and food waste. Biogas is produced by anaerobic ...
to electricity. Spiral spacers may be used to increase electricity generation by creating a helical flow in the MFC. Scaling MFCs is a challenge because of the power output challenges of a larger surface area.
Types
Mediated
Most microbial cells are electrochemically inactive. Electron transfer from microbial cells to the
electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
is facilitated by mediators such as
thionine,
pyocyanin
Pyocyanin (PCN−) is one of the many toxic compounds produced and secreted by the Gram negative bacterium ''Pseudomonas aeruginosa''. Pyocyanin is a blue secondary metabolite, turning red below pH 4.9, with the ability to oxidise and reduce other ...
,
methyl viologen,
methyl blue
Methyl blue is a chemical compound with the molecular formula C37H27N3Na2O9S3. It is used as a stain in histology, and stains collagen blue in tissue sections. It can be used in some differential staining techniques such as Mallory's trichrome ...
,
humic acid
Humic substances (HS) are colored relatively recalcitrant organic compounds naturally formed during long-term decomposition and transformation of biomass residues. The color of humic substances varies from bright yellow to light or dark brown lead ...
, and
neutral red
Neutral red (toluylene red, Basic Red 5, or C.I. 50040) is a eurhodin dye used for staining in histology. It stains lysosomes red. It is used as a general stain in histology, as a counterstain in combination with other dyes, and for many stain ...
. Most available mediators are expensive and toxic.
Mediator-free
left, 250px, A plant microbial fuel cell (PMFC)
Mediator-free microbial fuel cells use electrochemically active bacteria such as ''
Shewanella putrefaciens'' and ''
Aeromonas hydrophila
''Aeromonas hydrophila'' is a heterotrophic, Gram-negative, rod-shaped bacterium mainly found in areas with a warm climate. This bacterium can be found in fresh or brackish water. It can survive in aerobic and anaerobic environments, and can ...
'' to transfer electrons directly from the bacterial respiratory enzyme to the electrode. Some bacteria are able to transfer their electron production via the
pili on their external membrane. Mediator-free MFCs are less well characterized, such as the
strain of bacteria used in the system, type of
ion-exchange membrane
An ion-exchange membrane is a semi-permeable membrane that transports certain dissolved ions, while blocking other ions or neutral molecules.
Ion-exchange membranes are therefore electrically conductive. They are often used in desalination and ...
and system conditions (temperature, pH, etc.)
Mediator-free microbial fuel cells can run on
wastewater
Wastewater (or waste water) is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of do ...
and derive energy directly from certain plants and O
2. This configuration is known as a plant microbial fuel cell. Possible plants include
reed sweetgrass,
cordgrass
''Spartina'' is a genus of plants in the grass family, frequently found in coastal salt marshes. Species in this genus are commonly known as cordgrass or cord-grass, and are native to the coasts of the Atlantic Ocean in western and southern Eu ...
, rice, tomatoes,
lupines and
algae
Algae ( , ; : alga ) is an informal term for any organisms of a large and diverse group of photosynthesis, photosynthetic organisms that are not plants, and includes species from multiple distinct clades. Such organisms range from unicellular ...
. Given that the power is obtained using living plants (''in situ''-energy production), this variant can provide ecological advantages.
Microbial electrolysis
One variation of the mediator-less MFC is the microbial electrolysis cell (MEC). While MFCs produce electric current by the bacterial decomposition of organic compounds in water, MECs partially reverse the process to generate hydrogen or methane by applying a voltage to bacteria. This supplements the voltage generated by the microbial decomposition of organics, leading to the
electrolysis of water
Electrolysis of water is using electricity to Water splitting, split water into oxygen () and hydrogen () gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture ...
or methane production. A complete reversal of the MFC principle is found in
microbial electrosynthesis, in which
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
is reduced by bacteria using an external electric current to form multi-carbon organic compounds.
Soil-based
150px, A soil-based MFC
Soil
Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, water, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from ''soil'' by re ...
-based microbial fuel cells adhere to the basic MFC principles, whereby soil acts as the nutrient-rich anodic media, the
inoculum and the
proton exchange membrane
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen ...
(PEM). The
anode
An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
is placed at a particular depth within the soil, while the
cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
rests on top the soil and is exposed to air.
Soils naturally
teem with diverse microbes, including
electrogenic bacteria needed for MFCs, and are full of complex sugars and other nutrients that have accumulated from plant and animal material decay. Moreover, the
aerobic
Aerobic means "requiring air," in which "air" usually means oxygen.
Aerobic may also refer to
* Aerobic exercise, prolonged exercise of moderate intensity
* Aerobics, a form of aerobic exercise
* Aerobic respiration, the aerobic process of cellu ...
(oxygen consuming) microbes present in the soil act as an oxygen filter, much like the expensive PEM materials used in laboratory MFC systems, which cause the
redox
Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
potential of the soil to decrease with greater depth. Soil-based MFCs are becoming popular educational tools for science classrooms.
Sediment microbial fuel cells (SMFCs) have been applied for
wastewater treatment
Wastewater treatment is a process which removes and eliminates contaminants from wastewater. It thus converts it into an effluent that can be returned to the water cycle. Once back in the water cycle, the effluent creates an acceptable impact on ...
. Simple SMFCs can generate energy while decontaminating
wastewater
Wastewater (or waste water) is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of do ...
. Most such SMFCs contain plants to mimic constructed wetlands. By 2015 SMFC tests had reached more than 150 L.
In 2015 researchers announced an SMFC application that extracts energy and charges a
battery. Salts dissociate into positively and negatively charged ions in water and move and adhere to the respective negative and positive electrodes, charging the battery and making it possible to remove the salt effecting ''microbial capacitive
desalination
Desalination is a process that removes mineral components from saline water. More generally, desalination is the removal of salts and minerals from a substance. One example is Soil salinity control, soil desalination. This is important for agric ...
''. The microbes produce more energy than is required for the desalination process. In 2020, a European research project achieved the treatment of seawater into fresh water for human consumption with an energy consumption around 0.5 kWh/m3, which represents an 85% reduction in current energy consumption respect state of the art desalination technologies. Furthermore, the biological process from which the energy is obtained simultaneously purifies residual water for its discharge in the environment or reuse in agricultural/industrial uses. This has been achieved in the desalination innovation center that Aqualia has opened in Denia, Spain early 2020.
Phototrophic biofilm
Phototrophic biofilm MFCs (ner) use a phototrophic
biofilm
A biofilm is a Syntrophy, syntrophic Microbial consortium, community of microorganisms in which cell (biology), cells cell adhesion, stick to each other and often also to a surface. These adherent cells become embedded within a slimy ext ...
anode containing photosynthetic microorganism such as
chlorophyta
Chlorophyta is a division of green algae informally called chlorophytes.
Description
Chlorophytes are eukaryotic organisms composed of cells with a variety of coverings or walls, and usually a single green chloroplast in each cell. They are ...
and
candyanophyta. They carry out photosynthesis and thus produce organic metabolites and donate electrons.
One study found that PBMFCs display a
power density
Power density, defined as the amount of power (the time rate of energy transfer) per unit volume, is a critical parameter used across a spectrum of scientific and engineering disciplines. This metric, typically denoted in watts per cubic meter ...
sufficient for practical applications.
The sub-category of phototrophic MFCs that use purely oxygenic photosynthetic material at the anode are sometimes called
biological photovoltaic systems.
Nanoporous membrane
The
United States Naval Research Laboratory
The United States Naval Research Laboratory (NRL) is the corporate research laboratory for the United States Navy and the United States Marine Corps. Located in Washington, DC, it was founded in 1923 and conducts basic scientific research, appl ...
developed nanoporous membrane microbial fuel cells that use a non-PEM to generate passive diffusion within the cell. The membrane is a nonporous polymer filter (
nylon
Nylon is a family of synthetic polymers characterised by amide linkages, typically connecting aliphatic or Polyamide#Classification, semi-aromatic groups.
Nylons are generally brownish in color and can possess a soft texture, with some varieti ...
,
cellulose
Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
, or
polycarbonate
Polycarbonates (PC) are a group of thermoplastic polymers containing carbonate ester, carbonate groups in their chemical structures. Polycarbonates used in engineering are strong, toughness, tough materials, and some grades are optically transp ...
). It offers comparable power densities to
Nafion
Nafion is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer-copolymer synthesized in 1962 by Dr. Donald J. Connolly at the DuPont Experimental Station in Wilmington Delaware (U.S. Patent 3,282,875). Additional work on the polym ...
(a well-known PEM) with greater durability. Porous membranes allow passive diffusion thereby reducing the necessary power supplied to the MFC in order to keep the PEM active and increasing the total energy output.
MFCs that do not use a membrane can deploy anaerobic bacteria in aerobic environments. However, membrane-less MFCs experience cathode contamination by the indigenous bacteria and the power-supplying microbe. The novel passive diffusion of nanoporous membranes can achieve the benefits of a membrane-less MFC without worry of cathode contamination.Nanoporous membranes are also 11 times cheaper than Nafion (Nafion-117, $0.22/cm
2 vs. polycarbonate, <$0.02/cm
2).
Ceramic membrane
PEM membranes can be replaced with ceramic materials.
Ceramic membrane costs can be as low as $5.66/m
2. The macroporous structure of ceramic membranes allows for good transport of ionic species.
The materials that have been successfully employed in ceramic MFCs are
earthenware
Earthenware is glazed or unglazed Vitrification#Ceramics, nonvitreous pottery that has normally been fired below . Basic earthenware, often called terracotta, absorbs liquids such as water. However, earthenware can be made impervious to liquids ...
,
alumina
Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
,
mullite
Mullite or porcelainite is a rare silicate mineral formed during contact metamorphism of clay minerals. It can form two stoichiometric forms: 3 Al2 O32 SiO2 or 2Al2O3 SiO2. Unusually, mullite has no charge-balancing cations present. As a result ...
,
pyrophyllite
Pyrophyllite is a phyllosilicate mineral composed of aluminium silicate hydroxide: Al2Si4O10(OH)2. It occurs in two forms (habits): crystalline folia and compact masses; distinct crystals are not known.
The folia have a pronounced pearly luster ...
, and
terracotta
Terracotta, also known as terra cotta or terra-cotta (; ; ), is a clay-based non-vitreous ceramic OED, "Terracotta""Terracotta" MFA Boston, "Cameo" database fired at relatively low temperatures. It is therefore a term used for earthenware obj ...
.
Generation process
When microorganisms consume a substance such as
sugar
Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose
Glucose is a sugar with the Chemical formula#Molecular formula, molecul ...
in aerobic conditions, they produce
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
and
water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
. However, when
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
is not present, they may produce carbon dioxide,
hydrons (
hydrogen ion
A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particl ...
s), and
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, as described below for
sucrose
Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula .
For human consumption, sucrose is extracted and refined ...
:
Microbial fuel cells use
inorganic
An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''.
Inor ...
mediators to tap into the
electron transport chain
An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
of cells and channel electrons produced. The mediator crosses the outer cell
lipid membrane
The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a l ...
s and
bacterial outer membrane
The bacterial outer membrane is found in gram-negative bacteria. Gram-negative bacteria form two lipid bilayers in their cell envelopes - an inner membrane (IM) that encapsulates the cytoplasm, and an outer membrane (OM) that encapsulates the p ...
; then, it begins to liberate electrons from the electron transport chain that normally would be taken up by oxygen or other intermediates.
The now-reduced mediator exits the cell laden with electrons that it transfers to an electrode; this electrode becomes the anode. The release of the electrons recycles the mediator to its original oxidized state, ready to repeat the process. This can happen only under anaerobic conditions; if oxygen is present, it will collect the electrons, as it has more
free energy to release.
Certain bacteria can circumvent the use of inorganic mediators by making use of special electron transport pathways known collectively as
extracellular electron transfer (EET). EET pathways allow the microbe to directly reduce compounds outside of the cell, and can be used to enable direct electrochemical communication with the anode.
In MFC operation, the anode is the terminal electron acceptor recognized by bacteria in the anodic chamber. Therefore, the microbial activity is strongly dependent on the anode's redox potential. A
Michaelis–Menten curve was obtained between the anodic potential and the power output of an
acetate
An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
-driven MFC. A critical anodic potential seems to provide maximum power output.
Potential mediators include natural red, methylene blue, thionine, and resorufin.
Organisms capable of producing an electric current are termed
exoelectrogen
An exoelectrogen normally refers to a microorganism that has the ability to transfer electrons extracellularly. While exoelectrogen is the predominant name, other terms have been used: electrochemically active bacteria, anode respiring bacteria, an ...
s. In order to turn this current into usable electricity, exoelectrogens have to be accommodated in a fuel cell.
The mediator and a micro-organism such as yeast, are mixed together in a solution to which is added a substrate such as
glucose
Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
. This mixture is placed in a sealed chamber to prevent oxygen from entering, thus forcing the micro-organism to undertake
anaerobic respiration
Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain.
In aerobic organisms undergoing ...
. An electrode is placed in the solution to act as the anode.
In the second chamber of the MFC is another solution and the positively charged cathode. It is the equivalent of the oxygen sink at the end of the electron transport chain, external to the biological cell. The solution is an
oxidizing agent
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In ot ...
that picks up the electrons at the cathode. As with the electron chain in the yeast cell, this could be a variety of molecules such as oxygen, although a more convenient option is a solid oxidizing agent, which requires less volume.
Connecting the two electrodes is a wire (or other electrically conductive path). Completing the circuit and connecting the two chambers is a salt bridge or ion-exchange membrane. This last feature allows the protons produced, as described in '','' to pass from the anode chamber to the cathode chamber.
The reduced mediator carries electrons from the cell to the electrode. Here the mediator is oxidized as it deposits the electrons. These then flow across the wire to the second electrode, which acts as an electron sink. From here they pass to an oxidizing material. Also the hydrogen ions/protons are moved from the anode to the cathode via a proton exchange membrane such as
Nafion
Nafion is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer-copolymer synthesized in 1962 by Dr. Donald J. Connolly at the DuPont Experimental Station in Wilmington Delaware (U.S. Patent 3,282,875). Additional work on the polym ...
. They will move across to the lower concentration gradient and be combined with the oxygen but to do this they need an electron. This generates current and the hydrogen is used sustaining the concentration gradient.
Algal biomass has been observed to give high energy when used as the substrate in microbial fuel cell.
Applications in environmental remediation
Microbial fuel cells (MFCs) have emerged as promising tools for environmental remediation due to their unique ability to utilize the metabolic activities of microorganisms for both electricity generation and pollutant degradation. MFCs find applications across diverse contexts in environmental remediation. One primary application is in bioremediation, where the electroactive microorganisms on the MFC anode actively participate in the breakdown of organic pollutants, providing a sustainable and efficient method for pollutant removal. Moreover, MFCs play a significant role in wastewater treatment by simultaneously generating electricity and enhancing water quality through the microbial degradation of contaminants. These fuel cells can be deployed in situ, allowing for continuous and autonomous remediation in contaminated sites. Furthermore, their versatility extends to sediment microbial fuel cells (SMFCs), which are capable of removing heavy metals and nutrients from sediments. By integrating MFCs with sensors, they enable remote environmental monitoring in challenging locations. The applications of microbial fuel cells in environmental remediation highlight their potential to convert pollutants into a renewable energy source while actively contributing to the restoration and preservation of ecosystems.
Challenges and advances
Microbial fuel cells (MFCs) offer significant potential as sustainable and innovative technologies, but they are not without their challenges. One major obstacle lies in the optimization of MFC performance, which remains a complex task due to various factors including microbial diversity, electrode materials, and reactor design. The development of cost-effective and long-lasting electrode materials presents another hurdle, as it directly affects the economic viability of MFCs on a larger scale. Furthermore, the scaling up of MFCs for practical applications poses engineering and logistical challenges. Nonetheless, ongoing research in microbial fuel cell technology continues to address these obstacles. Scientists are actively exploring new electrode materials, enhancing microbial communities to improve efficiency, and optimizing reactor configurations. Moreover, advancements in synthetic biology and genetic engineering have opened up possibilities for designing custom microbes with enhanced electron transfer capabilities, pushing the boundaries of MFC performance.
Collaborative efforts between multidisciplinary fields are also contributing to a deeper understanding of MFC mechanisms and expanding their potential applications in areas such as wastewater treatment, environmental remediation, and sustainable energy production.
See also
*
Bacterial nanowires
*
Biobattery
*
Cable bacteria
*
Dark fermentation
*
Electrohydrogenesis
Electrohydrogenesis or biocatalyzed electrolysis is the name given to a process for generating hydrogen gas from organic matter being decomposition, decomposed by bacteria. This process uses a modified fuel cell to contain the organic matter and w ...
*
Electromethanogenesis
*
Fermentative hydrogen production Fermentative hydrogen production is the Fermentation (biochemistry), fermentative conversion of organic substrates to hydrogen, H2. Hydrogen produced in this manner is often called biohydrogen. The conversion is affected by bacteria and protozoa, ...
*
Glossary of fuel cell terms
The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to ...
*
Hydrogen hypothesis
*
Hydrogen technologies
Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses.
Some hydrogen technologies are carbon neutral and could have a role in pre ...
*
Photofermentation
References
*
*
*
*Yue P.L. and Lowther K. (1986). Enzymatic Oxidation of C1 compounds in a Biochemical Fuel Cell. The Chemical Engineering Journal, 33B, p 69-77
Further reading
*
*
External links
DIY MFC KitSustainable and efficient biohydrogen production via electrohydrogenesis – November 2007Microbial Fuel Cell blogA research-type blog on common techniques used in MFC research.
Microbial Fuel CellsThis website is originating from a few of the research groups currently active in the MFC research domain.
Microbial Fuel Cells from Rhodopherax FerrireducensAn overview from the Science Creative Quarterly.
Discussion group on Microbial Fuel CellsInnovation company developing MFC technology
{{fuel cells
category:bioelectrochemistry
category:fuel cells
category:hydrogen biology
category:renewable energy