In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a snub polyhedron is a
polyhedron
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
A convex polyhedron is the convex hull of finitely many points, not all on th ...
obtained by performing a
snub operation:
alternating a corresponding
omnitruncated
In geometry, an omnitruncation is an operation applied to a regular polytope (or honeycomb) in a Wythoff construction that creates a maximum number of facets. It is represented in a Coxeter–Dynkin diagram with all nodes ringed.
It is a ''shortc ...
or
truncated polyhedron, depending on the definition. Some, but not all, authors include
antiprisms as snub polyhedra, as they are obtained by this construction from a degenerate "polyhedron" with only two faces (a
dihedron
A dihedron is a type of polyhedron, made of two polygon faces which share the same set of ''n'' edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat ...
).
Chiral snub polyhedra do not always have
reflection symmetry and hence sometimes have two ''enantiomorphous'' (left- and right-handed) forms which are reflections of each other. Their
symmetry group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient ...
s are all
point groups.
For example, the
snub cube:
Snub polyhedra have
Wythoff symbol
In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform pol ...
and by extension,
vertex configuration . Retrosnub polyhedra (a subset of the snub polyhedron, containing the
great icosahedron,
small retrosnub icosicosidodecahedron, and
great retrosnub icosidodecahedron
In geometry, the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as . It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It is given a Schlä ...
) still have this form of Wythoff symbol, but their vertex configurations are instead
List of snub polyhedra
Uniform
There are 12 uniform snub polyhedra, not including the antiprisms, the
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
as a snub
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
, the
great icosahedron as a retrosnub
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
and the
great disnub dirhombidodecahedron
In geometry, the great disnub dirhombidodecahedron, also called ''Skilling's figure'', is a degenerate uniform star polyhedron.
It was proven in 1970 that there are only 75 uniform polyhedra other than the infinite families of prisms and antipr ...
, also known as Skilling's figure.
When the
Schwarz triangle
In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere (spherical tiling), possibly overlapping, through reflections in its edges. They were classified in .
These can be defined mor ...
of the snub polyhedron is
isosceles, the snub polyhedron is not chiral. This is the case for the antiprisms, the
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
, the
great icosahedron, the
small snub icosicosidodecahedron
In geometry, the small snub icosicosidodecahedron or snub disicosidodecahedron is a uniform star polyhedron, indexed as U32. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices. Its stellation core is a truncated pent ...
, and the
small retrosnub icosicosidodecahedron.
In the pictures of the snub derivation (showing a distorted snub polyhedron, topologically identical to the uniform version, arrived at from geometrically alternating the parent uniform omnitruncated polyhedron) where green is not present, the faces derived from alternation are coloured red and yellow, while the snub triangles are blue. Where green is present (only for the
snub icosidodecadodecahedron and
great snub dodecicosidodecahedron), the faces derived from alternation are red, yellow, and blue, while the snub triangles are green.
''Notes:''
*The
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
,
snub cube and
snub dodecahedron
In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.
The snub dodecahedron has 92 faces (the most ...
are the only three
convex ones. They are obtained by snubification of the
truncated octahedron
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
,
truncated cuboctahedron
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its fac ...
and the
truncated icosidodecahedron
In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron,Wenninger Model Number 16 great rhombicosidodecahedron,Williams (Section 3-9, p. 94)Cromwell (p. 82) omnitruncated dodecahedron or omnitruncated icosahedronNorman Wooda ...
- the three convex truncated
quasiregular polyhedra
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular polygon, regular faces, which alternate around each vertex (geometry), vertex. They are vertex-transitive and edge-transitive, hence a step closer ...
.
*The only snub polyhedron with the
chiral octahedral group
A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedr ...
of symmetries is the
snub cube.
*Only the
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
and the
great icosahedron are also
regular polyhedra. They are also
deltahedra
In geometry, a deltahedron (plural ''deltahedra'') is a polyhedron whose faces are all equilateral triangles. The name is taken from the Greek upper case delta (Δ), which has the shape of an equilateral triangle. There are infinitely many delt ...
.
*Only the icosahedron, great icosahedron,
small snub icosicosidodecahedron
In geometry, the small snub icosicosidodecahedron or snub disicosidodecahedron is a uniform star polyhedron, indexed as U32. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices. Its stellation core is a truncated pent ...
,
small retrosnub icosicosidodecahedron,
great dirhombicosidodecahedron, and
great disnub dirhombidodecahedron
In geometry, the great disnub dirhombidodecahedron, also called ''Skilling's figure'', is a degenerate uniform star polyhedron.
It was proven in 1970 that there are only 75 uniform polyhedra other than the infinite families of prisms and antipr ...
also have reflective symmetries.
There is also the infinite set of
antiprisms. They are formed from
prism
Prism usually refers to:
* Prism (optics), a transparent optical component with flat surfaces that refract light
* Prism (geometry), a kind of polyhedron
Prism may also refer to:
Science and mathematics
* Prism (geology), a type of sedimentary ...
s, which are truncated
hosohedra
In spherical geometry, an -gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices.
A regular -gonal hosohedron has Schläfli symbol with each spherical lune havi ...
, ''
degenerate''
regular polyhedra. Those up to hexagonal are listed below. In the pictures showing the snub derivation, the faces derived from alternation (of the prism bases) are coloured red, and the snub triangles are coloured yellow. The exception is the tetrahedron, for which all the faces are derived as red snub triangles, as alternating the square bases of the cube results in degenerate
digons as faces.
''Notes:''
*Two of these polyhedra may be constructed from the first two snub polyhedra in the list starting with the
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
: the
pentagonal antiprism is a
parabidiminished icosahedron
In geometry, the pentagonal antiprism is the third in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It consists of two pentagons joined to each other by a ring of 10 triangles for ...
and a
pentagrammic crossed-antiprism
In geometry, the pentagrammic crossed-antiprism is one in an infinite set of nonconvex antiprisms formed by triangle sides and two regular star polygon caps, in this case two pentagrams.
It differs from the pentagrammic antiprism by having oppos ...
is a parabidiminished great icosahedron, also known as a ''parabireplenished great icosahedron''.
Non-uniform
Two
Johnson solids
In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson ...
are snub polyhedra: the
snub disphenoid
In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vert ...
and the
snub square antiprism
In geometry, the snub square antiprism is one of the Johnson solids ().
It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the i ...
. Neither is chiral.
References
*
*
*
*
Mäder, R. E.''Uniform Polyhedra.'' Mathematica J. 3, 48-57, 1993.
{{DEFAULTSORT:Snub Polyhedron
Polyhedra