HOME

TheInfoList



OR:

The snake lemma is a tool used in
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, particularly
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
, to construct
long exact sequence In mathematics, an exact sequence is a sequence of morphisms between objects (for example, Group (mathematics), groups, Ring (mathematics), rings, Module (mathematics), modules, and, more generally, objects of an abelian category) such that the Im ...
s. The snake lemma is valid in every
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category o ...
and is a crucial tool in homological algebra and its applications, for instance in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
. Homomorphisms constructed with its help are generally called ''connecting homomorphisms''.


Statement

In an
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category o ...
(such as the category of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s or the category of
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s over a given field), consider a
commutative diagram 350px, The commutative diagram used in the proof of the five lemma In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
: : where the rows are
exact sequence In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definit ...
s and 0 is the
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
. Then there is an exact sequence relating the kernels and
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
s of ''a'', ''b'', and ''c'': :\ker a ~~ \ker b ~~ \ker c ~\overset~ \operatornamea ~~ \operatornameb ~~ \operatornamec where ''d'' is a homomorphism, known as the ''connecting homomorphism''. Furthermore, if the morphism ''f'' is a
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphis ...
, then so is the morphism \ker a ~~ \ker b, and if ''g is an
epimorphism In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analo ...
, then so is \operatorname b ~~ \operatorname c. The cokernels here are: \operatornamea = A'/\operatornamea, \operatornameb = B'/\operatornameb, \operatornamec = C'/\operatornamec.


Explanation of the name

To see where the snake lemma gets its name, expand the diagram above as follows: : and then the exact sequence that is the conclusion of the lemma can be drawn on this expanded diagram in the reversed "S" shape of a slithering
snake Snakes are elongated limbless reptiles of the suborder Serpentes (). Cladistically squamates, snakes are ectothermic, amniote vertebrates covered in overlapping scales much like other members of the group. Many species of snakes have s ...
.


Construction of the maps

The maps between the kernels and the maps between the cokernels are induced in a natural manner by the given (horizontal) maps because of the diagram's commutativity. The exactness of the two induced sequences follows in a straightforward way from the exactness of the rows of the original diagram. The important statement of the lemma is that a ''connecting homomorphism'' d exists which completes the exact sequence. In the case of abelian groups or modules over some
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, the map d can be constructed as follows: Pick an element x in \operatorname c and view it as an element of C. Since g is
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
, there exists y in B with g(y)=x. By commutativity of the diagram, we have g'(b(y)) = c(g(y)) = c(x) = 0 (since x is in the kernel of c), and therefore b(y) is in the kernel of g'. Since the bottom row is exact, we find an element z in A' with f'(z)=b(y). By injectivity of f', z is unique. We then define d(x)=z+\operatorname(a). Now one has to check that d is well-defined (i.e., d(x) only depends on x and not on the choice of y), that it is a homomorphism, and that the resulting long sequence is indeed exact. One may routinely verify the exactness by
diagram chasing 350px, The commutative diagram used in the proof of the five lemma In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
(see the proof of Lemma 9.1 in ). Once that is done, the theorem is proven for abelian groups or modules over a ring. For the general case, the argument may be rephrased in terms of properties of arrows and cancellation instead of elements. Alternatively, one may invoke Mitchell's embedding theorem.


Naturality

In the applications, one often needs to show that long exact sequences are "natural" (in the sense of
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
s). This follows from the naturality of the sequence produced by the snake lemma. If : is a commutative diagram with exact rows, then the snake lemma can be applied twice, to the "front" and to the "back", yielding two long exact sequences; these are related by a commutative diagram of the form :


Example

Let k be field, V be a k-vector space. V is k /math>-module by t:V \to V being a k-linear transformation, so we can tensor V and k over k /math>. : V \otimes_ k = V \otimes_ (k (t)) = V/tV = \operatorname(t) . Given a short exact sequence of k-vector spaces 0 \to M \to N \to P \to 0, we can induce an exact sequence M \otimes_ k \to N \otimes_ k \to P \otimes_ k \to 0 by right exactness of tensor product. But the sequence 0 \to M \otimes_ k \to N \otimes_ k \to P \otimes_ k \to 0 is not exact in general. Hence, a natural question arises. Why is this sequence not exact? According to the diagram above, we can induce an exact sequence \ker(t_M) \to \ker(t_N) \to \ker(t_P) \to M \otimes_ k \to N \otimes_ k \to P \otimes_ k \to 0 by applying the snake lemma. Thus, the snake lemma reflects the tensor product's failure to be exact.


In the category of groups

Whether the snake lemma holds in the category of groups depends on the definition of cokernel. If f: A \to B is a homomorphism of groups, the universal property of the cokernel is satisfied by the natural map B \to B / N(\operatorname f), where N(\operatorname f) is the normalization of the image of f. The snake lemma fails with this definition of cokernel: The connecting homomorphism can still be defined, and one can write down a sequence as in the statement of the snake lemma. This will always be a chain complex, but it may fail to be exact. If one simply replaces the cokernels in the statement of the snake lemma with the (right) cosets A' / \operatorname a, B' / \operatorname b, C' / \operatorname c', the lemma is still valid. The quotients however are not groups, but pointed sets (a short sequence (X, x) \to (Y, y) \to (Z, z) of pointed sets with maps f: X \to Y and g: Y \to Z is called exact if f(X) = g^(z)).


Counterexample to snake lemma with categorical cokernel

Consider the
alternating group In mathematics, an alternating group is the Group (mathematics), group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted ...
A_5: this contains a subgroup isomorphic to the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
S_3, which in turn can be written as a semidirect product of
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
s: S_3\simeq C_3\rtimes C_2. This gives rise to the following diagram with exact rows: :\begin & 1 & \to & C_3 & \to & C_3 & \to 1\\ & \downarrow && \downarrow && \downarrow \\ 1 \to & 1 & \to & S_3 & \to & A_5 \end Note that the middle column is not exact: C_2 is not a normal subgroup in the semidirect product. Since A_5 is
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by John ...
, the right vertical arrow has trivial cokernel. Meanwhile the quotient group S_3/C_3 is isomorphic to C_2. The sequence in the statement of the snake lemma is therefore :1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow C_2 \longrightarrow 1, which indeed fails to be exact.


In popular culture

The proof of the snake lemma is taught by Jill Clayburgh's character at the very beginning of the 1980 film '' It's My Turn''.


See also

*
Zig-zag lemma In mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every abelian category. Statement In an abel ...


References

* * *


External links

*{{MathWorld, title=Snake Lemma, urlname=SnakeLemma
Snake Lemma
at
PlanetMath PlanetMath is a free content, free, collaborative, mathematics online encyclopedia. Intended to be comprehensive, the project is currently hosted by the University of Waterloo. The site is owned by a US-based nonprofit corporation, "PlanetMath.org ...

Proof of the Snake Lemma
in the fil
It's My Turn
Homological algebra Lemmas in category theory