HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the magnitude or size of a
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
of objects to which it belongs. Magnitude as a concept dates to
Ancient Greece Ancient Greece () was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity (), that comprised a loose collection of culturally and linguistically r ...
and has been applied as a measure of distance from one object to another. For numbers, the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of a number is commonly applied as the measure of units between a number and zero. In vector spaces, the
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' ...
is a measure of magnitude used to define a distance between two points in space. In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, magnitude can be defined as quantity or distance. An
order of magnitude In a ratio scale based on powers of ten, the order of magnitude is a measure of the nearness of two figures. Two numbers are "within an order of magnitude" of each other if their ratio is between 1/10 and 10. In other words, the two numbers are ...
is typically defined as a unit of distance between one number and another's numerical places on the decimal scale.


History

Ancient Greeks Ancient Greece () was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity (), that comprised a loose collection of culturally and linguistically re ...
distinguished between several types of magnitude, including: * Positive
fraction A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
s *
Line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
s (ordered by
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
) * Plane figures (ordered by
area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
) *
Solids Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
(ordered by
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
) * Angles (ordered by angular magnitude) They proved that the first two could not be the same, or even
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
systems of magnitude. They did not consider negative magnitudes to be meaningful, and ''magnitude'' is still primarily used in contexts in which
zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
is either the smallest size or less than all possible sizes.


Numbers

The magnitude of any
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
x is usually called its ''
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
'' or ''modulus'', denoted by , x, .


Real numbers

The absolute value of a
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
''r'' is defined by: : \left, r \ = r, \text r \text 0 : \left, r \ = -r, \text r < 0 . Absolute value may also be thought of as the number's
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
from zero on the real
number line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin point representing the number zero and evenly spaced marks in either dire ...
. For example, the absolute value of both 70 and −70 is 70.


Complex numbers

A
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
''z'' may be viewed as the position of a point ''P'' in a 2-dimensional space, called the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
. The absolute value (or '' modulus'') of ''z'' may be thought of as the distance of ''P'' from the origin of that space. The formula for the absolute value of is similar to that for the
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' ...
of a vector in a 2-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
: : \left, z \ = \sqrt where the real numbers ''a'' and ''b'' are the
real part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
and the
imaginary part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
of ''z'', respectively. For instance, the modulus of is \sqrt = 5. Alternatively, the magnitude of a complex number ''z'' may be defined as the square root of the product of itself and its
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
, \bar, where for any complex number z = a + bi, its complex conjugate is \bar = a -bi. : \left, z \ = \sqrt = \sqrt = \sqrt = \sqrt (where i^2 = -1).


Vector spaces


Euclidean vector space

A
Euclidean vector In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scal ...
represents the position of a point ''P'' in a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. Geometrically, it can be described as an arrow from the origin of the space (vector tail) to that point (vector tip). Mathematically, a vector x in an ''n''-dimensional Euclidean space can be defined as an ordered list of ''n'' real numbers (the
Cartesian coordinate In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
s of ''P''): ''x'' = 'x''1, ''x''2, ..., ''x''''n'' Its magnitude or length, denoted by \, x\, , is most commonly defined as its
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' ...
(or Euclidean length): : \, \mathbf\, = \sqrt. For instance, in a 3-dimensional space, the magnitude of , 4, 12is 13 because \sqrt = \sqrt = 13. This is equivalent to the
square root In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
of the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
of the vector with itself: : \, \mathbf\, = \sqrt. The Euclidean norm of a vector is just a special case of
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is o ...
: the distance between its tail and its tip. Two similar notations are used for the Euclidean norm of a vector ''x'': # \left \, \mathbf \right \, , # \left , \mathbf \right , . A disadvantage of the second notation is that it can also be used to denote the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of
scalars Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers *Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
and the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
s of
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
, which introduces an element of ambiguity.


Normed vector spaces

By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
does not possess a magnitude. A
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
endowed with a
norm Norm, the Norm or NORM may refer to: In academic disciplines * Normativity, phenomenon of designating things as good or bad * Norm (geology), an estimate of the idealised mineral content of a rock * Norm (philosophy), a standard in normative e ...
, such as the Euclidean space, is called a
normed vector space The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898. The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war ...
. The norm of a vector ''v'' in a normed vector space can be considered to be the magnitude of ''v''.


Pseudo-Euclidean space

In a
pseudo-Euclidean space In mathematics and theoretical physics, a pseudo-Euclidean space of signature is a finite- dimensional real -space together with a non- degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vect ...
, the magnitude of a vector is the value of the
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong t ...
for that vector.


Logarithmic magnitudes

When comparing magnitudes, a
logarithmic scale A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences among the magnitudes of the numbers involved. Unlike a linear Scale (measurement) ...
is often used. Examples include the
loudness In acoustics, loudness is the subjectivity, subjective perception of sound pressure. More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". The relat ...
of a
sound In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the br ...
(measured in
decibels The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a ...
), the
brightness Brightness is an attribute of visual perception in which a source appears to be radiating/reflecting light. In other words, brightness is the perception dictated by the luminance of a visual target. The perception is not linear to luminance, and ...
of a
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
, and the
Richter scale The Richter scale (), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and pr ...
of earthquake intensity. Logarithmic magnitudes can be negative. In the
natural sciences Natural science or empirical science is one of the branches of science concerned with the description, understanding and prediction of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer ...
, a logarithmic magnitude is typically referred to as a ''
level Level or levels may refer to: Engineering *Level (optical instrument), a device used to measure true horizontal or relative heights * Spirit level or bubble level, an instrument designed to indicate whether a surface is horizontal or vertical *C ...
''.


Order of magnitude

Orders of magnitude denote differences in numeric quantities, usually measurements, by a factor of 10—that is, a difference of one digit in the location of the decimal point.


Other mathematical measures


See also

* Number sense *
Vector notation In mathematics and physics, vector notation is a commonly used notation for representing vectors, which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower ...
* Set size


References

{{Reflist Elementary mathematics Unary operations