HOME

TheInfoList



OR:

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, similarity invariance is a property exhibited by a function whose value is unchanged under similarities of its domain. That is, f is invariant under similarities if f(A) = f(B^AB) where B^AB is a
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
similar to ''A''. Examples of such functions include the trace,
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
,
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
, and the minimal polynomial. A more colloquial phrase that means the same thing as similarity invariance is "basis independence", since a matrix can be regarded as a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
, written in a certain basis, and the same operator in a new basis is related to one in the old basis by the conjugation B^AB, where B is the
transformation matrix In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation mapping \mathbb^n to \mathbb^m and \mathbf x is a column vector with n entries, then there exists an m \times n matrix A, called the transfo ...
to the new basis.


See also

*
Invariant (mathematics) In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objec ...
* Gauge invariance * Trace diagram Functions and mappings {{mathanalysis-stub