Sidereal time ("sidereal" pronounced ) is a system of
timekeeping used especially by
astronomer
An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ...
s. Using sidereal time and the
celestial coordinate system, it is easy to locate the positions of
celestial objects in the
night sky
The night sky is the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon.
Natural light sources in a night sky include moonlig ...
. Sidereal time is a "time scale that is based on
Earth's rate of rotation measured relative to the
fixed stars". A sidereal day (also known as the sidereal rotation period) represents the time for one rotation about the planet axis relative to the stars.
Viewed from the same
location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day. This is similar to how the time kept by a
sundial
A sundial is a horology, horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the position of the Sun, apparent position of the Sun in the sky. In the narrowest sense of the ...
(
Solar time
Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Traditionally, there are three types of time reckoning based ...
) can be used to find the location of the
Sun. Just as the Sun and
Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
appear to rise in the east and set in the west due to the rotation of Earth, so do the stars. Both solar time and sidereal time make use of the regularity of Earth's rotation about its polar axis: solar time is reckoned according to the position of the Sun in the sky while sidereal time is based approximately on the position of the fixed stars on the theoretical celestial sphere.
More exactly, sidereal time is the angle, measured along the
celestial equator, from the observer's
meridian to the
great circle that passes through the
March equinox
The March equinox or northward equinox is the equinox on the Earth when the subsolar point appears to leave the Southern Hemisphere and cross the celestial equator, heading northward as seen from Earth. The March equinox is known as the ver ...
(the northern hemisphere's vernal equinox) and both
celestial poles, and is usually expressed in hours, minutes, and seconds. (In the context of sidereal time, "March equinox" or "equinox" or "first point of Aries" is currently a direction, from the center of the Earth along the line formed by the intersection of the Earth's equator and the Earth's orbit around the Sun, toward the constellation Pisces; during ancient times it was toward the constellation Aries.) Common time on a typical clock (using
mean Solar time
Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Traditionally, there are three types of time reckoning based ...
) measures a slightly longer cycle, affected not only by Earth's axial rotation but also by Earth's orbit around the Sun.
The March equinox itself
precesses slowly westward relative to the fixed stars, completing one revolution in about 25,800 years, so the misnamed "sidereal" day ("sidereal" is derived from the Latin ''sidus'' meaning "star") is 0.0084 seconds shorter than the
stellar day, Earth's actual period of rotation relative to the fixed stars.
The slightly longer stellar period is measured as the
Earth rotation angle (ERA), formerly the stellar angle. An increase of 360° in the ERA is a full rotation of the Earth.
A sidereal day on Earth is approximately 86164.0905
second
The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
s (23 h 56 min 4.0905 s or 23.9344696 h).
(Seconds are defined as per
International System of Units
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official s ...
and are not to be confused with
ephemeris seconds.)
Each day, the sidereal time at any given place and time will be about four minutes shorter than local
civil time
In modern usage, civil time refers to statutory time as designated by civilian authorities. Modern civil time is generally national standard time in a time zone at a UTC offset, fixed offset from Coordinated Universal Time (UTC), possibly adjusted ...
(which is based on solar time), so that for a complete year the number of sidereal "days" is one more than the number of solar days.
Comparison to solar time
Solar time
Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Traditionally, there are three types of time reckoning based ...
is measured by the apparent
diurnal motion of the Sun. Local noon in apparent solar time is the moment when the Sun is exactly due south or north (depending on the observer's latitude and the season). A mean solar day (what we normally measure as a "day") is the average time between local solar noons ("average" since this varies slightly over a year).
Earth makes one rotation around its axis each sidereal day; during that time it moves a short distance (about 1°) along its orbit around the Sun. So after a sidereal day has passed, Earth still needs to rotate slightly more before the Sun reaches local noon according to solar time. A mean solar day is, therefore, nearly 4 minutes longer than a sidereal day.
The stars are so far away that Earth's movement along its orbit makes nearly no difference to their apparent direction (except for the nearest stars if measured with extreme accuracy; see
parallax
Parallax is a displacement or difference in the apparent position of an object viewed along two different sightline, lines of sight and is measured by the angle or half-angle of inclination between those two lines. Due to perspective (graphica ...
), and so they return to their highest point at the same time each sidereal day.
Another way to understand this difference is to notice that, relative to the stars, as viewed from Earth, the position of the Sun at the same time each day appears to move around Earth once per year. A year has about 365.24 solar days but 366.24 sidereal days. Therefore, there is one fewer
solar day per year than there are sidereal days, similar to an observation of the
coin rotation paradox. This makes a sidereal day approximately times the length of the 24-hour solar day.
Effects of precession
Earth's rotation is not a simple rotation around an axis that remains always parallel to itself. Earth's rotational axis itself rotates about a second axis,
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
to the plane of Earth's orbit, taking about 25,800 years to perform a complete rotation. This phenomenon is termed the
precession of the equinoxes
In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's Rotation around a fixed axis, rotational axis. In the absence of precession, the astronomical body's orbit would show ...
. Because of this precession, the stars appear to move around Earth in a manner more complicated than a simple constant rotation.
For this reason, to simplify the description of Earth's orientation in astronomy and
geodesy
Geodesy or geodetics is the science of measuring and representing the Figure of the Earth, geometry, Gravity of Earth, gravity, and Earth's rotation, spatial orientation of the Earth in Relative change, temporally varying Three-dimensional spac ...
, it was conventional to chart the positions of the stars in the sky according to
right ascension
Right ascension (abbreviated RA; symbol ) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the equinox (celestial coordinates), March equinox to the (hour circle of the) point in questio ...
and
declination
In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or ...
, which are based on a frame of reference that follows Earth's precession, and to keep track of Earth's rotation, through sidereal time, relative to this frame as well. (The conventional reference frame, for purposes of star catalogues, was replaced in 1998 with the
International Celestial Reference Frame
The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "sho ...
, which is fixed with respect to extra-galactic radio sources. Because of the great distances, these sources have no appreciable
proper motion.) In this frame of reference, Earth's rotation is close to constant, but the stars appear to rotate slowly with a period of about 25,800 years. It is also in this frame of reference that the
tropical year (or solar year), the year related to Earth's seasons, represents one orbit of Earth around the Sun. The precise definition of a sidereal day is the time taken for one rotation of Earth in this precessing frame of reference.
Modern definitions
During the past, time was measured by observing stars with instruments such as
photographic zenith tubes and
Danjon astrolabes, and the passage of stars across defined lines would be timed with the observatory clock. Then, using the
right ascension
Right ascension (abbreviated RA; symbol ) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the equinox (celestial coordinates), March equinox to the (hour circle of the) point in questio ...
of the stars from a star catalog, the time when the star should have passed through the meridian of the observatory was computed, and a correction to the time kept by the observatory clock was computed. Sidereal time was defined such that the March equinox would
transit the meridian of the observatory at 0 hours local sidereal time.
Beginning during the 1970s, the
radio astronomy
Radio astronomy is a subfield of astronomy that studies Astronomical object, celestial objects using radio waves. It started in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observat ...
methods
very-long-baseline interferometry (VLBI) and
pulsar timing
Methods of detecting exoplanets usually rely on indirect strategies – that is, they do not directly Astrophotography, image the planet but deduce its existence from another signal. Any planet is an extremely faint light source compared to its ...
overtook optical instruments for the most precise
astrometry. This resulted in the determination of
UT1 (mean solar time at 0° longitude) using VLBI, a new measure of the Earth Rotation Angle, and new definitions of sidereal time. These changes became effective 1 January 2003.
Earth rotation angle
The Earth rotation angle (ERA) measures the rotation of the Earth from an origin on the celestial equator, the ''Celestial Intermediate Origin'', also termed the ''Celestial Ephemeris Origin'', that has no instantaneous motion along the equator; it was originally referred to as the ''non-rotating origin''. This point is very close to the equinox of J2000.
ERA, measured in
radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s, is related to
UT1 by a simple linear relation:
where ''t
U'' is the
Julian UT1 date (JD) minus 2451545.0.
The linear coefficient represents the
Earth's rotation speed around its own axis.
ERA replaces ''Greenwich Apparent Sidereal Time'' (GAST). The origin on the celestial equator for GAST, termed the true
equinox
A solar equinox is a moment in time when the Sun appears directly above the equator, rather than to its north or south. On the day of the equinox, the Sun appears to rise directly east and set directly west. This occurs twice each year, arou ...
, does move, due to the movement of the equator and the ecliptic. The lack of motion of the origin of ERA is considered a significant advantage.
The ERA may be converted to other units; for example, the ''Astronomical Almanac for the Year 2017'' tabulated it in degrees, minutes, and seconds.
As an example, the ''Astronomical Almanac for the Year 2017'' gave the ERA at 0 h 1 January 2017 UT1 as 100° 37′ 12.4365″. Since
Coordinated Universal Time
Coordinated Universal Time (UTC) is the primary time standard globally used to regulate clocks and time. It establishes a reference for the current time, forming the basis for civil time and time zones. UTC facilitates international communicat ...
(UTC) is within a second or two of UT1, this can be used as an anchor to give the ERA approximately for a given civil time and date.
Mean and apparent varieties

Although ERA is intended to replace sidereal time, there is a need to maintain definitions for sidereal time during the transition, and when working with older data and documents.
Similarly to mean solar time, every location on Earth has its own local sidereal time (LST), depending on the longitude of the point. Since it is not feasible to publish tables for every longitude, astronomical tables use Greenwich sidereal time (GST), which is sidereal time on the
IERS Reference Meridian, less precisely termed the Greenwich, or
Prime meridian
A prime meridian is an arbitrarily chosen meridian (geography), meridian (a line of longitude) in a geographic coordinate system at which longitude is defined to be 0°. On a spheroid, a prime meridian and its anti-meridian (the 180th meridian ...
. There are two varieties, mean sidereal time if the mean equator and equinox of date are used, and apparent sidereal time if the apparent equator and equinox of date are used. The former ignores the effect of
astronomical nutation while the latter includes it. When the choice of location is combined with the choice of including astronomical nutation or not, the acronyms GMST, LMST, GAST, and LAST result.
The following relationships are true:
The new definitions of Greenwich mean and apparent sidereal time (since 2003, see above) are:
such that ''θ'' is the Earth Rotation Angle, ''E''
PREC is the accumulated precession, and ''E''
0 is equation of the origins, which represents accumulated precession and nutation. The calculation of precession and nutation was described in Chapter 6 of Urban & Seidelmann.
As an example, the ''Astronomical Almanac for the Year 2017'' gave the ERA at 0 h 1 January 2017 UT1 as 100° 37′ 12.4365″ (6 h 42 m 28.8291 s). The GAST was 6 h 43 m 20.7109 s. For GMST the hour and minute were the same but the second was 21.1060.
Relationship between solar time and sidereal time intervals

If a certain interval ''I'' is measured in both mean solar time (UT1) and sidereal time, the numerical value will be greater in sidereal time than in UT1, because sidereal days are shorter than UT1 days. The ratio is:
such that ''t'' represents the number of Julian centuries elapsed since noon 1 January 2000
Terrestrial Time.
Sidereal days compared to solar days on other planets
Six of the eight solar
planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s have
prograde rotation—that is, they rotate more than once per year in the same direction as they orbit the Sun, so the Sun rises in the east.
Venus
Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
and
Uranus
Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
, however, have
retrograde rotation. For prograde rotation, the formula relating the lengths of the sidereal and solar days is:
or, equivalently:
When calculating the formula for a retrograde rotation, the operator of the denominator will be a plus sign (put another way, in the original formula the length of the sidereal day must be treated as negative). This is due to the solar day being shorter than the sidereal day for retrograde rotation, as the rotation of the planet would be against the direction of orbital motion.
If a planet rotates prograde, and the sidereal day exactly equals the orbital period, then the formula above gives an infinitely long solar day (
division by zero
In mathematics, division by zero, division (mathematics), division where the divisor (denominator) is 0, zero, is a unique and problematic special case. Using fraction notation, the general example can be written as \tfrac a0, where a is the di ...
). This is the case for a planet in
synchronous rotation; in the case of zero eccentricity, one hemisphere experiences eternal day, the other eternal night, with a "twilight belt" separating them.
All the solar planets more distant from the Sun than Earth are similar to Earth in that, since they experience many rotations per revolution around the Sun, there is only a small difference between the length of the sidereal day and that of the solar day – the ratio of the former to the latter never being less than Earth's ratio of 0.997. But the situation is quite different for
Mercury and Venus. Mercury's sidereal day is about two-thirds of its orbital period, so by the prograde formula its solar day lasts for two revolutions around the Sun – three times as long as its sidereal day. Venus rotates retrograde with a sidereal day lasting about 243.0 Earth days, or about 1.08 times its orbital period of 224.7 Earth days; hence by the retrograde formula its solar day is about 116.8 Earth days, and it has about 1.9 solar days per orbital period.
By convention, rotation periods of planets are given in sidereal terms unless otherwise specified.
See also
*
Anti-sidereal time
*
Earth's rotation
Earth's rotation or Earth's spin is the rotation of planet Earth around its own Rotation around a fixed axis, axis, as well as changes in the orientation (geometry), orientation of the rotation axis in space. Earth rotates eastward, in progra ...
*
International Celestial Reference Frame
The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "sho ...
*
Nocturnal (instrument)
*
Sidereal month
*
Sidereal year
*
Synodic day
*
Transit instrument
Citations
References
*
*
*
*
*
*
External links
Web-based Sidereal time calculator
{{Authority control
Horology
Time in astronomy
Time scales
Units of time