Shing-Tung Yau
   HOME

TheInfoList



OR:

Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at
Harvard University Harvard University is a Private university, private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the History of the Puritans in North America, Puritan clergyma ...
. Until 2022, Yau was the William Caspar Graustein Professor of Mathematics at Harvard, at which point he moved to Tsinghua. Yau was born in Shantou in 1949, moved to
British Hong Kong Hong Kong was under British Empire, British rule from 1841 to 1997, except for a Japanese occupation of Hong Kong, brief period of Japanese occupation during World War II from 1941 to 1945. It was a crown colony of the United Kingdom from 1841 ...
at a young age, and then moved to the United States in 1969. He was awarded the Fields Medal in 1982, in recognition of his contributions to
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s, the Calabi conjecture, the positive energy theorem, and the Monge–Ampère equation. Yau is considered one of the major contributors to the development of modern
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and geometric analysis. The impact of Yau's work are also seen in the mathematical and physical fields of convex geometry,
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, enumerative geometry, mirror symmetry,
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, and string theory, while his work has also touched upon
applied mathematics Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a ...
,
engineering Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
, and
numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ...
.


Biography

Yau was born in Shantou,
Guangdong ) means "wide" or "vast", and has been associated with the region since the creation of Guang Prefecture in AD 226. The name "''Guang''" ultimately came from Guangxin ( zh, labels=no, first=t, t= , s=广信), an outpost established in Han dynasty ...
, Republic of China in 1949 to Hakka parents. His ancestral hometown is Jiaoling County, China. His mother, Yeuk Lam Leung, was from Meixian District, China; his father, Chen Ying Chiu (), was a Republic of China Kuomintang scholar of philosophy, history, literature, and economics. He was the fifth of eight children. During the Communist takeover of mainland China when he was only a few months old, his family moved to
British Hong Kong Hong Kong was under British Empire, British rule from 1841 to 1997, except for a Japanese occupation of Hong Kong, brief period of Japanese occupation during World War II from 1941 to 1945. It was a crown colony of the United Kingdom from 1841 ...
where his schooling was (except for English classes) entirely in the Cantonese language instead of his parents' native Hakka Chinese language. He was not able to revisit until 1979, at the invitation of Hua Luogeng, when mainland China entered the reform and opening era. They lived in
Yuen Long Yuen Long is a town in the western New Territories, Hong Kong. To its west lie Hung Shui Kiu (), Tin Shui Wai, Lau Fau Shan and Ha Tsuen, to the south Shap Pat Heung and Tai Tong, to the east Au Tau and Kam Tin (), and to the north Nam Sang Wa ...
at first, and then moved to Shatin in 1954. They had financial troubles from having lost all of their possessions, and his father and second-oldest sister died when he was thirteen. Yau began to read and appreciate his father's books, and became more devoted to schoolwork. After graduating from Pui Ching Middle School, he studied mathematics at the
Chinese University of Hong Kong The Chinese University of Hong Kong (CUHK) is a public university, public research university in Sha Tin, New Territories, Hong Kong. Established in 1963 as a federation of three university college, collegesChung Chi College, New Asia Coll ...
from 1966 to 1969, without receiving a degree due to graduating early. He left his textbooks with his younger brother, Stephen Shing-Toung Yau, who then decided to major in mathematics as well. Yau left for the Ph.D. program in mathematics at
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
in the fall of 1969. Over the winter break, he read the first issues of the '' Journal of Differential Geometry'', and was deeply inspired by John Milnor's papers on geometric group theory. Subsequently, he formulated a generalization of Preissman's theorem, and developed his ideas further with Blaine Lawson over the next semester.Page at ''Center of Mathematical Sciences at Zhejiang University''
/ref> Using this work, he received his Ph.D. the following year, in 1971, under the supervision of Shiing-Shen Chern.Shing-Tung Yau
Mathematics Genealogy.
He spent a year as a member of the
Institute for Advanced Study The Institute for Advanced Study (IAS) is an independent center for theoretical research and intellectual inquiry located in Princeton, New Jersey. It has served as the academic home of internationally preeminent scholars, including Albert Ein ...
at Princeton before joining
Stony Brook University Stony Brook University (SBU), officially the State University of New York at Stony Brook, is a public university, public research university in Stony Brook, New York, United States, on Long Island. Along with the University at Buffalo, it is on ...
in 1972 as an assistant professor. In 1974, he became an associate professor at
Stanford University Leland Stanford Junior University, commonly referred to as Stanford University, is a Private university, private research university in Stanford, California, United States. It was founded in 1885 by railroad magnate Leland Stanford (the eighth ...
. In 1976, he took a visiting faculty position at
UCLA The University of California, Los Angeles (UCLA) is a public land-grant research university in Los Angeles, California, United States. Its academic roots were established in 1881 as a normal school then known as the southern branch of the C ...
and married physicist Yu-Yun Kuo, whom he knew from his time as a graduate student at Berkeley. In 1979, he moved back to the Institute for Advanced Study and he became a professor there in 1980. In 1984, he took a chair professorship at
University of California, San Diego The University of California, San Diego (UC San Diego in communications material, formerly and colloquially UCSD) is a public university, public Land-grant university, land-grant research university in San Diego, California, United States. Es ...
. In 1987, he moved to
Harvard University Harvard University is a Private university, private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the History of the Puritans in North America, Puritan clergyma ...
. In April 2022, Yau retired from Harvard, where he was William Caspar Graustein Professor of Mathematics Emeritus. In the same year, he moved to Tsinghua University as a professor of mathematics. According to Yau's autobiography, he became " stateless" in 1978 after the British Consulate revoked his Hong Kong residency due to his United States permanent residency status."Stephen Hawking invited me to discuss he proofwith him at Cambridge University in late August 1978. I gladly accepted.... Travel was difficult, however, because the British Consulate had recently taken my Hong Kong resident card, maintaining that I could not keep it now that I had a U.S. green card. In the process, I had become stateless. I was no longer a citizen of any country.... until I became a U.S. citizen in 1990." Regarding his status when receiving his Fields Medal in 1982, Yau stated "I am proud to say that when I was awarded the Fields Medal in mathematics, I held no passport of any country and should certainly be considered Chinese." Yau remained "stateless" until 1990, when he obtained United States citizenship. With science journalist Steve Nadis, Yau has written a non-technical account of Calabi-Yau manifolds and string theory, a history of Harvard's mathematics department, a case for the construction of the Circular Electron Positron Collider in China, an autobiography, and a book on the relation of geometry to physics.


Academic activities

Yau has made major contributions to the development of modern
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and geometric analysis. As said by
William Thurston William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds. Thurst ...
in 1981: His most widely celebrated results include the resolution (with Shiu-Yuen Cheng) of the boundary-value problem for the Monge-Ampère equation, the positive mass theorem in the mathematical analysis of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
(achieved with Richard Schoen), the resolution of the Calabi conjecture, the topological theory of minimal surfaces (with William Meeks), the Donaldson-Uhlenbeck-Yau theorem (done with Karen Uhlenbeck), and the Cheng−Yau and Li−Yau gradient estimates for
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s (found with Shiu-Yuen Cheng and Peter Li). Many of Yau's results (in addition to those of others) were written into textbooks co-authored with Schoen. In addition to his research, Yau is the founder and director of several mathematical institutes, mostly in China. John Coates has commented that "no other mathematician of our times has come close" to Yau's success at fundraising for mathematical activities in mainland China and Hong Kong. During a sabbatical year at National Tsinghua University in
Taiwan Taiwan, officially the Republic of China (ROC), is a country in East Asia. The main geography of Taiwan, island of Taiwan, also known as ''Formosa'', lies between the East China Sea, East and South China Seas in the northwestern Pacific Ocea ...
, Yau was asked by Charles Kao to start a mathematical institute at the
Chinese University of Hong Kong The Chinese University of Hong Kong (CUHK) is a public university, public research university in Sha Tin, New Territories, Hong Kong. Established in 1963 as a federation of three university college, collegesChung Chi College, New Asia Coll ...
. After a few years of fundraising efforts, Yau established the multi-disciplinary Institute of Mathematical Sciences in 1993, with his frequent co-author Shiu-Yuen Cheng as associate director. In 1995, Yau assisted Yongxiang Lu with raising money from Ronnie Chan and Gerald Chan's Morningside Group for the new Morningside Center of Mathematics at the
Chinese Academy of Sciences The Chinese Academy of Sciences (CAS; ) is the national academy for natural sciences and the highest consultancy for science and technology of the People's Republic of China. It is the world's largest research organization, with 106 research i ...
. Yau has also been involved with the Center of Mathematical Sciences at
Zhejiang University Zhejiang University (ZJU) is a public university, public research university in Hangzhou, Zhejiang, China. It is affiliated with the Ministry of Education (China), Ministry of Education. The university is part of Project 211, Project 985, and D ...
, at Tsinghua University, at
National Taiwan University National Taiwan University (NTU; zh, t=國立臺灣大學, poj=Kok-li̍p Tâi-oân Tāi-ha̍k, p=, s=) is a National university, national Public university, public research university in Taipei, Taiwan. Founded in 1928 during Taiwan under J ...
, and in Sanya. More recently, in 2014, Yau raised money to establish the Center of Mathematical Sciences and Applications (of which he is the director), the Center for Green Buildings and Cities, and the Center for Immunological Research, all at Harvard University. Modeled on an earlier physics conference organized by Tsung-Dao Lee and Chen-Ning Yang, Yau proposed the International Congress of Chinese Mathematicians, which is now held every three years. The first congress was held at the Morningside Center from December 12 to 18, 1998. He co-organizes the annual "Journal of Differential Geometry" and "Current Developments in Mathematics" conferences. Yau is an editor-in-chief of the Journal of Differential Geometry, Asian Journal of Mathematics, and Advances in Theoretical and Mathematical Physics. As of 2021, he has advised over seventy Ph.D. students. In Hong Kong, with the support of Ronnie Chan, Yau set up the Hang Lung Award for high school students. He has also organized and participated in meetings for high school and college students, such as the panel discussions ''Why Math? Ask Masters!'' in
Hangzhou Hangzhou, , Standard Mandarin pronunciation: ; formerly romanized as Hangchow is a sub-provincial city in East China and the capital of Zhejiang province. With a population of 13 million, the municipality comprises ten districts, two counti ...
, July 2004, and ''The Wonder of Mathematics'' in Hong Kong, December 2004. Yau also co-initiated a series of books on popular mathematics, "Mathematics and Mathematical People". In 2002 and 2003, Grigori Perelman posted preprints to the
arXiv arXiv (pronounced as "archive"—the X represents the Chi (letter), Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not Scholarly pee ...
claiming to prove the Thurston geometrization conjecture and, as a special case, the renowned Poincaré conjecture. Although his work contained many new ideas and results, his proofs lacked detail on a number of technical arguments. Over the next few years, several mathematicians devoted their time to fill in details and provide expositions of Perelman's work to the mathematical community. A well-known August 2006 article in the '' New Yorker'' written by Sylvia Nasar and David Gruber about the situation brought some professional disputes involving Yau to public attention. * Alexander Givental alleged that Bong Lian, Kefeng Liu, and Yau illegitimately took credit from him for resolving a well-known conjecture in the field of mirror symmetry. Although it is undisputed that Lian−Liu−Yau's article appeared after Givental's, they claim that his work contained gaps that were only filled in following work in their own publication; Givental claims that his original work was complete. Nasar and Gruber quote an anonymous mathematician as agreeing with Givental.For both sides of the dispute, see: * and Footnote 17 in * * In the 1980s, Yau's colleague Yum-Tong Siu accused Yau's Ph.D. student Gang Tian of plagiarizing some of his work. At the time, Yau defended Tian against Siu's accusations. In the 2000s, Yau began to amplify Siu's allegations, saying that he found Tian's dual position at
Princeton University Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
and
Peking University Peking University (PKU) is a Public university, public Types of universities and colleges in China#By designated academic emphasis, university in Haidian, Beijing, China. It is affiliated with and funded by the Ministry of Education of the Peop ...
to be highly unethical due to his high salary from Peking University compared to other professors and students who made more active contributions to the university. Science Magazine covered the broader phenomena of such positions in China, with Tian and Yau as central figures. * Nasar and Gruber say that, having allegedly not done any notable work since the middle of the 1980s, Yau tried to regain prominence by claiming that Xi-Ping Zhu and Yau's former student Huai-Dong Cao had solved the Thurston and Poincaré conjectures, only partially based on some of Perelman's ideas. Nasar and Gruber quoted Yau as agreeing with the acting director of one of Yau's mathematical centers, who at a press conference assigned Cao and Zhu thirty percent of the credit for resolving the conjectures, with Perelman receiving only twenty-five (with the rest going to Richard Hamilton). A few months later, a segment of NPR's '' All Things Considered'' covering the situation reviewed an audio recording of the press conference and found no such statement made by either Yau or the acting director. Yau claimed that Nasar and Gruber's article was defamatory and contained several falsehoods, and that they did not give him the opportunity to represent his own side of the disputes. He considered filing a lawsuit against the magazine, claiming professional damage, but says he decided that it wasn't sufficiently clear what such an action would achieve. He established a public relations website, with letters responding to the ''New Yorker'' article from several mathematicians, including himself and two others quoted in the article. In his autobiography, Yau said that his statements in 2006 such as that Cao and Zhu gave "the first complete and detailed account of the proof of the Poincaré conjecture" should have been phrased more carefully. Although he does believe Cao and Zhu's work to be the first and most rigorously detailed account of Perelman's work, he says he should have clarified that they had "not surpassed Perelman's work in any way." He has also maintained the view that (as of 2019) the final parts of Perelman's proof should be better understood by the mathematical community, with the corresponding possibility that there remain some unnoticed errors.


Technical contributions to mathematics

Yau has made a number of major research contributions, centered on
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and its appearance in other fields of mathematics and science. In addition to his research, Yau has compiled influential sets of
open problems In science and mathematics, an open problem or an open question is a known problem which can be accurately stated, and which is assumed to have an objective and verifiable solution, but which has not yet been solved (i.e., no solution for it is kno ...
in differential geometry, including both well-known old conjectures with new proposals and problems. Two of Yau's most widely cited problem lists from the 1980s have been updated with notes on progress as of 2014. Particularly well-known are a conjecture on existence of minimal hypersurfaces and on the spectral geometry of minimal hypersurfaces.


Calabi conjecture

In 1978, by studying the complex Monge–Ampère equation, Yau resolved the Calabi conjecture, which had been posed by Eugenio Calabi in 1954. As a special case, this showed that Kähler-Einstein metrics exist on any closed Kähler manifold whose first Chern class is nonpositive. Yau's method adapted earlier work of Calabi, Jürgen Moser, and Aleksei Pogorelov, developed for quasilinear elliptic
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how ...
and the real Monge–Ampère equation, to the setting of the complex Monge–Ampère equation. *In
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, Yau's theorem is significant in proving the general existence of closed manifolds of special holonomy; any simply-connected closed Kähler manifold which is Ricci flat must have its holonomy group contained in the special unitary group, according to the Ambrose–Singer theorem. Examples of compact Riemannian manifolds with other special holonomy groups have been found by Dominic Joyce and Peter Kronheimer, although no proposals for general existence results, analogous to Calabi's conjecture, have been successfully identified in the case of the other groups. * In
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, the existence of canonical metrics as proposed by Calabi allows one to give equally canonical representatives of characteristic classes by differential forms. Due to Yau's initial efforts at disproving the Calabi conjecture by showing that it would lead to contradictions in such contexts, he was able to draw striking corollaries to the conjecture itself. In particular, the Calabi conjecture implies the Miyaoka–Yau inequality on Chern numbers of surfaces, in addition to homotopical characterizations of the complex structures of the complex projective plane and of quotients of the two-dimensional complex unit ball. * A special case of the Calabi conjecture asserts that a Kähler metric of zero Ricci curvature must exist on any Kähler manifold whose first Chern class is zero. In string theory, it was discovered in 1985 by
Philip Candelas Philip Candelas, (born 24 October 1951, London, UK) is a British physicist and mathematician. After 20 years at the University of Texas at Austin, he served as Rouse Ball Professor of Mathematics at the University of Oxford until 2020 and is a F ...
, Gary Horowitz,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
, and Edward Witten that these ''Calabi–Yau manifolds'', due to their special holonomy, are the appropriate configuration spaces for superstrings. For this reason, Yau's resolution of the Calabi conjecture is considered to be of fundamental importance in modern string theory. The understanding of the Calabi conjecture in the noncompact setting is less definitive. Gang Tian and Yau extended Yau's analysis of the complex Monge−Ampère equation to the noncompact setting, where the use of cutoff functions and corresponding integral estimates necessitated the conditional assumption of certain controlled geometry near infinity. This reduces the problem to the question of existence of Kähler metrics with such asymptotic properties; they obtained such metrics for certain smooth quasi-projective complex varieties. They later extended their work to allow orbifold singularities. With Brian Greene, Alfred Shapere, and Cumrun Vafa, Yau introduced an ansatz for a Kähler metric on the set of regular points of certain surjective holomorphic maps, with Ricci curvature approximately zero. They were able to apply the Tian−Yau existence theorem to construct a Kähler metric which is exactly Ricci-flat. The Greene−Shapere−Vafa−Yau ansatz and its natural generalization, now known as a ''semi-flat metric'', has become important in several analyses of problems in Kähler geometry.


Scalar curvature and general relativity

The positive energy theorem, obtained by Yau in collaboration with his former doctoral student Richard Schoen, can be described in physical terms: However, it is a precise theorem of
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and geometric analysis, in which physical systems are modeled by Riemannian manifolds with nonnegativity of a certain generalized scalar curvature. As such, Schoen and Yau's approach originated in their study of
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s of positive scalar curvature, which is of interest in and of itself. The starting point of Schoen and Yau's analysis is their identification of a simple but novel way of inserting the Gauss–Codazzi equations into the second variation formula for the area of a stable minimal hypersurface of a three-dimensional Riemannian manifold. The Gauss–Bonnet theorem then highly constrains the possible topology of such a surface when the ambient manifold has positive scalar curvature. Schoen and Yau exploited this observation by finding novel constructions of stable minimal hypersurfaces with various controlled properties. Some of their existence results were developed simultaneously with similar results of Jonathan Sacks and Karen Uhlenbeck, using different techniques. Their fundamental result is on the existence of minimal immersions with prescribed topological behavior. As a consequence of their calculation with the Gauss–Bonnet theorem, they were able to conclude that certain topologically distinguished three-dimensional manifolds cannot have any Riemannian metric of nonnegative scalar curvature. Schoen and Yau then adapted their work to the setting of certain Riemannian asymptotically flat initial data sets in
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. They proved that negativity of the mass would allow one to invoke the Plateau problem to construct stable minimal surfaces which are geodesically complete. A noncompact analogue of their calculation with the Gauss–Bonnet theorem then provides a logical contradiction to the negativity of mass. As such, they were able to prove the positive mass theorem in the special case of their Riemannian initial data sets. Schoen and Yau extended this to the full Lorentzian formulation of the positive mass theorem by studying a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
proposed by Pong-Soo Jang. They proved that solutions to the Jang equation exist away from the apparent horizons of black holes, at which solutions can diverge to infinity. By relating the geometry of a Lorentzian initial data set to the geometry of the graph of such a solution to the Jang equation, interpreting the latter as a Riemannian initial data set, Schoen and Yau proved the full positive energy theorem. Furthermore, by reverse-engineering their analysis of the Jang equation, they were able to establish that any sufficient concentration of energy in general relativity must be accompanied by an apparent horizon. Due to the use of the Gauss–Bonnet theorem, these results were originally restricted to the case of three-dimensional Riemannian manifolds and four-dimensional Lorentzian manifolds. Schoen and Yau established an induction on dimension by constructing Riemannian metrics of positive scalar curvature on minimal hypersurfaces of Riemannian manifolds which have positive scalar curvature. Such minimal hypersurfaces, which were constructed by means of geometric measure theory by Frederick Almgren and Herbert Federer, are generally not smooth in large dimensions, so these methods only directly apply up for Riemannian manifolds of dimension less than eight. Without any dimensional restriction, Schoen and Yau proved the positive mass theorem in the class of locally conformally flat manifolds. In 2017, Schoen and Yau published a preprint claiming to resolve these difficulties, thereby proving the induction without dimensional restriction and verifying the Riemannian positive mass theorem in arbitrary dimension. Gerhard Huisken and Yau made a further study of the asymptotic region of Riemannian manifolds with strictly positive mass. Huisken had earlier initiated the study of volume-preserving mean curvature flow of hypersurfaces of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. Huisken and Yau adapted his work to the Riemannian setting, proving a long-time existence and convergence theorem for the flow. As a corollary, they established a new geometric feature of positive-mass manifolds, which is that their asymptotic regions are foliated by surfaces of constant mean curvature.


Omori−Yau maximum principle

Traditionally, the maximum principle technique is only applied directly on
compact space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., i ...
s, as maxima are then guaranteed to exist. In 1967, Hideki Omori found a novel maximum principle which applies on noncompact
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s whose sectional curvatures are bounded below. It is trivial that ''approximate'' maxima exist; Omori additionally proved the existence of approximate maxima where the values of the gradient and second derivatives are suitably controlled. Yau partially extended Omori's result to require only a lower bound on Ricci curvature; the result is known as the Omori−Yau maximum principle. Such generality is useful due to the appearance of Ricci curvature in the Bochner formula, where a lower bound is also typically used in algebraic manipulations. In addition to giving a very simple proof of the principle itself, Shiu-Yuen Cheng and Yau were able to show that the Ricci curvature assumption in the Omori−Yau maximum principle can be replaced by the assumption of the existence of cutoff functions with certain controllable geometry. Yau was able to directly apply the Omori−Yau principle to generalize the classical Schwarz−Pick lemma of
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
. Lars Ahlfors, among others, had previously generalized the lemma to the setting of Riemann surfaces. With his methods, Yau was able to consider the setting of a mapping from a complete Kähler manifold (with a lower bound on Ricci curvature) to a Hermitian manifold with holomorphic bisectional curvature bounded above by a negative number. Cheng and Yau extensively used their variant of the Omori−Yau principle to find Kähler−Einstein metrics on noncompact Kähler manifolds, under an ansatz developed by Charles Fefferman. The estimates involved in the method of continuity were not as difficult as in Yau's earlier work on the Calabi conjecture, due to the fact that Cheng and Yau only considered Kähler−Einstein metrics with negative scalar curvature. The more subtle question, where Fefferman's earlier work became important, is to do with geodesic completeness. In particular, Cheng and Yau were able to find complete Kähler-Einstein metrics of negative scalar curvature on any bounded, smooth, and strictly pseudoconvex subset of complex Euclidean space. These can be thought of as complex geometric analogues of the Poincaré ball model of hyperbolic space.


Differential Harnack inequalities

Yau's original application of the Omori−Yau maximum principle was to establish gradient estimates for a number of second-order elliptic partial differential equations. Given a function on a complete and smooth Riemannian manifold which satisfies various conditions relating the
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
to the function and gradient values, Yau applied the maximum principle to various complicated composite expressions to control the size of the gradient. Although the algebraic manipulations involved are complex, the conceptual form of Yau's proof is strikingly simple. Yau's novel gradient estimates have come to be called "differential Harnack inequalities" since they can be integrated along arbitrary paths in to recover inequalities which are of the form of the classical Harnack inequalities, directly comparing the values of a solution to a differential equation at two different input points. By making use of Calabi's study of the distance function on a Riemannian manifold, Yau and Shiu-Yuen Cheng gave a powerful localization of Yau's gradient estimates, using the same methods to simplify the proof of the Omori−Yau maximum principle. Such estimates are widely quoted in the particular case of harmonic functions on a Riemannian manifold, although Yau and Cheng−Yau's original results cover more general scenarios. In 1986, Yau and Peter Li made use of the same methods to study parabolic partial differential equations on Riemannian manifolds. Richard Hamilton generalized their results in certain geometric settings to matrix inequalities. Analogues of the Li−Yau and Hamilton−Li−Yau inequalities are of great importance in the theory of Ricci flow, where Hamilton proved a matrix differential Harnack inequality for the curvature operator of certain Ricci flows, and Grigori Perelman proved a differential Harnack inequality for the solutions of a backwards heat equation coupled with a Ricci flow. Cheng and Yau were able to use their differential Harnack estimates to show that, under certain geometric conditions, closed submanifolds of complete Riemannian or pseudo-Riemannian spaces are themselves complete. For instance, they showed that if is a spacelike hypersurface of Minkowski space which is topologically closed and has constant mean curvature, then the induced Riemannian metric on is complete. Analogously, they showed that if is an affine hypersphere of affine space which is topologically closed, then the induced affine metric on is complete. Such results are achieved by deriving a differential Harnack inequality for the (squared) distance function to a given point and integrating along intrinsically defined paths.


Donaldson−Uhlenbeck−Yau theorem

In 1985,
Simon Donaldson Sir Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth function, smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähl ...
showed that, over a nonsingular projective variety of complex dimension two, a holomorphic vector bundle admits a hermitian Yang–Mills connection if and only if the bundle is stable. A result of Yau and Karen Uhlenbeck generalized Donaldson's result to allow a compact Kähler manifold of any dimension. The Uhlenbeck–Yau method relied upon elliptic partial differential equations while Donaldson's used parabolic partial differential equations, roughly in parallel to Eells and Sampson's epochal work on harmonic maps. The results of Donaldson and Uhlenbeck–Yau have since been extended by other authors. Uhlenbeck and Yau's article is important in giving a clear reason that stability of the holomorphic vector bundle can be related to the analytic methods used in constructing a hermitian Yang–Mills connection. The essential mechanism is that if an approximating sequence of hermitian connections fails to converge to the required Yang–Mills connection, then they can be rescaled to converge to a subsheaf which can be verified to be destabilizing by Chern–Weil theory. Like the Calabi–Yau theorem, the Donaldson–Uhlenbeck–Yau theorem is of interest in theoretical physics. In the interest of an appropriately general formulation of
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
included the hermitian Yang–Mills condition as part of his Strominger system, a proposal for the extension of the Calabi−Yau condition to non-Kähler manifolds. Ji-Xiang Fu and Yau introduced an ansatz for the solution of Strominger's system on certain three-dimensional
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
s, reducing the problem to a complex Monge−Ampère equation, which they solved. Yau's solution of the Calabi conjecture had given a reasonably complete answer to the question of how Kähler metrics on compact complex manifolds of nonpositive first Chern class can be deformed into Kähler–Einstein metrics. Akito Futaki showed that the existence of holomorphic vector fields can act as an obstruction to the direct extension of these results to the case when the complex manifold has positive first Chern class. A proposal of Calabi's suggested that Kähler–Einstein metrics exist on any compact Kähler manifolds with positive first Chern class which admit no holomorphic vector fields. During the 1980s, Yau and others came to understand that this criterion could not be sufficient. Inspired by the Donaldson−Uhlenbeck−Yau theorem, Yau proposed that the existence of Kähler–Einstein metrics must be linked to stability of the complex manifold in the sense of geometric invariant theory, with the idea of studying holomorphic vector fields along projective embeddings, rather than holomorphic vector fields on the manifold itself. Subsequent research of Gang Tian and
Simon Donaldson Sir Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth function, smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähl ...
refined this conjecture, which became known as the Yau–Tian–Donaldson conjecture relating Kähler–Einstein metrics and K-stability. In 2019, Xiuxiong Chen, Donaldson, and Song Sun were awarded the Oswald Veblen Prize for resolution of the conjecture.


Geometric variational problems

In 1982, Li and Yau resolved the Willmore conjecture in the non-embedded case. More precisely, they established that, given any smooth immersion of a closed surface in the 3-sphere which fails to be an embedding, the Willmore energy is bounded below by 8π. This is complemented by a 2012 result of Fernando Marques and André Neves, which says that in the alternative case of a smooth embedding of the 2-dimensional torus , the Willmore energy is bounded below by 2π2. Together, these results comprise the full Willmore conjecture, as originally formulated by Thomas Willmore in 1965. Although their assumptions and conclusions are quite similar, the methods of Li−Yau and Marques−Neves are distinct. Nonetheless, they both rely on structurally similar minimax schemes. Marques and Neves made novel use of the Almgren–Pitts min-max theory of the area functional from geometric measure theory; Li and Yau's approach depended on their new "conformal invariant", which is a min-max quantity based on the Dirichlet energy. The main work of their article is devoted to relating their conformal invariant to other geometric quantities. William Meeks and Yau produced some foundational results on minimal surfaces in three-dimensional manifolds, revisiting points left open by older work of Jesse Douglas and Charles Morrey. Following these foundations, Meeks, Leon Simon, and Yau gave a number of fundamental results on surfaces in three-dimensional Riemannian manifolds which minimize area within their homology class. They were able to give a number of striking applications. For example, they showed that if is an orientable 3-manifold such that every smooth embedding of a 2-sphere can be extended to a smooth embedding of the unit ball, then the same is true of any covering space of . Interestingly, Meeks-Simon-Yau's paper and Hamilton's foundational paper on Ricci flow, published in the same year, have a result in common, obtained by very distinct methods: any simply-connected compact 3-dimensional Riemannian manifold with positive Ricci curvature is diffeomorphic to the 3-sphere.


Geometric rigidity theorems

In the geometry of
submanifold In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
s, both the extrinsic and intrinsic geometries are significant. These are reflected by the intrinsic Riemannian metric and the second fundamental form. Many geometers have considered the phenomena which arise from restricting these data to some form of constancy. This includes as special cases the problems of minimal surfaces, constant mean curvature, and submanifolds whose metric has constant scalar curvature. * The archetypical example of such questions is Bernstein's problem, as completely settled in famous work of James Simons,
Enrico Bombieri Enrico Bombieri (born 26 November 1940) is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently professor emeritus in the School of Mathematics ...
, Ennio De Giorgi, and Enrico Giusti in the 1960s. Their work asserts that a minimal hypersurface which is a graph over
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
must be a plane in low dimensions, with counterexamples in high dimensions. The key point of the proof of planarity is the non-existence of conical and non-planar stable minimal hypersurfaces of Euclidean spaces of low dimension; this was given a simple proof by Richard Schoen, Leon Simon, and Yau. Their technique of combining the Simons inequality with the formula for second variation of area has subsequently been used many times in the literature. * Given the "threshold" dimension phenomena in the standard Bernstein problem, it is a somewhat surprising fact, due to Shiu-Yuen Cheng and Yau, that there is no dimensional restriction in the Lorentzian analogue: any spacelike hypersurface of multidimensional Minkowski space which is a graph over Euclidean space and has zero mean curvature must be a plane. Their proof makes use of the maximum principle techniques which they had previously used to prove differential Harnack estimates. Later they made use of similar techniques to give a new proof of the classification of complete parabolic or elliptic affine hyperspheres in
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is i ...
. * In one of his earliest papers, Yau considered the extension of the constant mean curvature condition to higher
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
, where the condition can be interpreted either as the mean curvature being parallel as a section of the
normal bundle In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion). Definition Riemannian manifold Let (M,g) be a Riemannian ...
, or as the constancy of the length of the mean curvature. Under the former interpretation, he fully characterized the case of two-dimensional surfaces in Riemannian space forms, and found partial results under the (weaker) second interpretation. Some of his results were independently found by Bang-Yen Chen. * Extending Philip Hartman and Louis Nirenberg's earlier work on intrinsically flat hypersurfaces of Euclidean space, Cheng and Yau considered hypersurfaces of space forms which have constant scalar curvature. The key tool in their analysis was an extension of
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
's differential identity used in the solution of the Weyl isometric embedding problem. Outside of the setting of submanifold rigidity problems, Yau was able to adapt Jürgen Moser's method of proving Caccioppoli inequalities, thereby proving new rigidity results for functions on complete Riemannian manifolds. A particularly famous result of his says that a subharmonic function cannot be both positive and L''p'' integrable unless it is constant. Similarly, on a complete Kähler manifold, a
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex de ...
cannot be L''p'' integrable unless it is constant.


Minkowski problem and Monge–Ampère equation

The Minkowski problem of classical differential geometry can be viewed as the problem of prescribing
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For ...
. In the 1950s, Louis Nirenberg and Aleksei Pogorelov resolved the problem for two-dimensional surfaces, making use of recent progress on the Monge–Ampère equation for two-dimensional domains. By the 1970s, higher-dimensional understanding of the Monge–Ampère equation was still lacking. In 1976, Shiu-Yuen Cheng and Yau resolved the Minkowski problem in general dimensions via the method of continuity, making use of fully geometric estimates instead of the theory of the Monge–Ampère equation. As a consequence of their resolution of the Minkowski problem, Cheng and Yau were able to make progress on the understanding of the Monge–Ampère equation. The key observation is that the Legendre transform of a solution of the Monge–Ampère equation has its graph's Gaussian curvature prescribed by a simple formula depending on the "right-hand side" of the Monge–Ampère equation. As a consequence, they were able to prove the general solvability of the Dirichlet problem for the Monge–Ampère equation, which at the time had been a major open question except for two-dimensional domains. Cheng and Yau's papers followed some ideas presented in 1971 by Pogorelov, although his publicly available works (at the time of Cheng and Yau's work) had lacked some significant detail. Pogorelov also published a more detailed version of his original ideas, and the resolutions of the problems are commonly attributed to both Cheng–Yau and Pogorelov. The approaches of Cheng−Yau and Pogorelov are no longer commonly seen in the literature on the Monge–Ampère equation, as other authors, notably Luis Caffarelli, Nirenberg, and Joel Spruck, have developed direct techniques which yield more powerful results, and which do not require the auxiliary use of the Minkowski problem. Affine spheres are naturally described by solutions of certain Monge–Ampère equations, so that their full understanding is significantly more complicated than that of Euclidean spheres, the latter not being based on
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s. In the ''parabolic'' case, affine spheres were completely classified as
paraboloid In geometry, a paraboloid is a quadric surface that has exactly one axial symmetry, axis of symmetry and no central symmetry, center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar p ...
s by successive work of Konrad Jörgens, Eugenio Calabi, and Pogorelov. The ''elliptic'' affine spheres were identified as
ellipsoid An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a Surface (mathemat ...
s by Calabi. The ''hyperbolic'' affine spheres exhibit more complicated phenomena. Cheng and Yau proved that they are asymptotic to convex cones, and conversely that every (uniformly) convex cone corresponds in such a way to some hyperbolic affine sphere. They were also able to provide new proofs of the previous classifications of Calabi and Jörgens–Calabi–Pogorelov.


Mirror symmetry

A Calabi–Yau manifold is a compact Kähler manifold which is Ricci-flat; as a special case of Yau's verification of the Calabi conjecture, such manifolds are known to exist. Mirror symmetry, which is a proposal developed by theoretical physicists dating from the late 1980s, postulates that Calabi−Yau manifolds of complex dimension three can be grouped into pairs which share certain characteristics, such as Euler and Hodge numbers. Based on this conjectural picture, the physicists
Philip Candelas Philip Candelas, (born 24 October 1951, London, UK) is a British physicist and mathematician. After 20 years at the University of Texas at Austin, he served as Rouse Ball Professor of Mathematics at the University of Oxford until 2020 and is a F ...
, Xenia de la Ossa, Paul Green, and Linda Parkes proposed a formula of enumerative geometry which encodes the number of rational curves of any fixed degree in a general quintic hypersurface of four-dimensional complex projective space. Bong Lian, Kefeng Liu, and Yau gave a rigorous proof that this formula holds. A year earlier, Alexander Givental had published a proof of the mirror formulas; according to Lian, Liu, and Yau, the details of his proof were only successfully filled in following their own publication. The proofs of Givental and Lian–Liu–Yau have some overlap but are distinct approaches to the problem, and each have since been given textbook expositions. The works of Givental and of Lian−Liu−Yau confirm a prediction made by the more fundamental mirror symmetry conjecture of how three-dimensional Calabi−Yau manifolds can be paired off. However, their works do not logically depend on the conjecture itself, and so have no immediate bearing on its validity. With
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
and Eric Zaslow, Yau proposed a geometric picture of how mirror symmetry might be systematically understood and proved to be true. Their idea is that a Calabi−Yau manifold with complex dimension three should be foliated by ''special Lagrangian'' tori, which are certain types of three-dimensional minimal submanifolds of the six-dimensional Riemannian manifold underlying the Calabi−Yau structure. Mirror manifolds would then be characterized, in terms of this conjectural structure, by having ''dual'' foliations. The Strominger−Yau−Zaslow (SYZ) proposal has been modified and developed in various ways since 1996. The conceptual picture that it provides has had a significant influence in the study of mirror symmetry, and research on its various aspects is currently an active field. It can be contrasted with the alternative homological mirror symmetry proposal by Maxim Kontsevich. The viewpoint of the SYZ conjecture is on geometric phenomena in Calabi–Yau spaces, while Kontsevich's conjecture abstracts the problem to deal with purely algebraic structures and
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
.


Comparison geometry

In one of Yau's earliest papers, written with Blaine Lawson, a number of fundamental results were found on the topology of closed Riemannian manifolds with nonpositive curvature. Their ''flat torus theorem'' characterizes the existence of a flat and totally geodesic immersed torus in terms of the algebra of the fundamental group. The ''splitting theorem'' says that the splitting of the fundamental group as a maximally noncommutative direct product implies the isometric splitting of the manifold itself. Similar results were obtained at the same time by Detlef Gromoll and Joseph Wolf. Their results have been extended to the broader context of isometric group actions on metric spaces of nonpositive curvature. Jeff Cheeger and Yau studied the heat kernel on a Riemannian manifold. They established the special case of Riemannian metrics for which geodesic spheres have constant mean curvature, which they proved to be characterized by radial symmetry of the heat kernel. Specializing to rotationally symmetric metrics, they used the exponential map to transplant the heat kernel to a geodesic ball on a general Riemannian manifold. Under the assumption that the symmetric "model" space under-estimates the Ricci curvature of the manifold itself, they carried out a direct calculation showing that the resulting function is a subsolution of the
heat equation In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quanti ...
. As a consequence, they obtained a lower estimate of the heat kernel on a general Riemannian manifold in terms of lower bounds on its Ricci curvature. In the special case of nonnegative Ricci curvature, Peter Li and Yau were able to use their gradient estimates to amplify and improve the Cheeger−Yau estimate. A well-known result of Yau's, obtained independently by Calabi, shows that any noncompact Riemannian manifold of nonnegative Ricci curvature must have volume growth of at least a linear rate. A second proof, using the Bishop–Gromov inequality instead of function theory, was later found by Cheeger, Mikhael Gromov, and Michael Taylor.


Spectral geometry

Given a smooth compact Riemannian manifold, with or without boundary, spectral geometry studies the eigenvalues of the Laplace–Beltrami operator, which in the case that the manifold has a boundary is coupled with a choice of boundary condition, usually Dirichlet or Neumann conditions. Paul Yang and Yau showed that in the case of a closed two-dimensional manifold, the first eigenvalue is bounded above by an explicit formula depending only on the genus and volume of the manifold. Earlier, Yau had modified Jeff Cheeger's analysis of the Cheeger constant so as to be able to estimate the first eigenvalue from below in terms of geometric data. In the 1910s,
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
showed that, in the case of Dirichlet boundary conditions on a smooth and bounded open subset of the plane, the eigenvalues have an asymptotic behavior which is dictated entirely by the area contained in the region. His result is known as Weyl's law. In 1960,
George Pólya George Pólya (; ; December 13, 1887 – September 7, 1985) was a Hungarian-American mathematician. He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University. He made fundamental contributi ...
conjectured that the Weyl law actually gives control of each individual eigenvalue, and not only of their asymptotic distribution. Li and Yau proved a weakened version of Pólya's conjecture, obtaining control of the ''averages'' of the eigenvalues by the expression in the Weyl law. In 1980, Li and Yau identified a number of new inequalities for Laplace–Beltrami eigenvalues, all based on the maximum principle and the differential Harnack estimates as pioneered five years earlier by Yau and Cheng−Yau. Their result on lower bounds based on geometric data is particularly well-known, and was the first of its kind to not require any conditional assumptions. Around the same time, a similar inequality was obtained by isoperimetric methods by Mikhael Gromov, although his result is weaker than Li and Yau's. In collaboration with Isadore Singer, Bun Wong, and Shing-Toung Yau, Yau used the Li–Yau methodology to establish a gradient estimate for the quotient of the first two eigenfunctions. Analogously to Yau's integration of gradient estimates to find Harnack inequalities, they were able to integrate their gradient estimate to obtain control of the ''fundamental gap,'' which is the difference between the first two eigenvalues. The work of Singer–Wong–Yau–Yau initiated a series of works by various authors in which new estimates on the fundamental gap were found and improved. In 1982, Yau identified fourteen problems of interest in spectral geometry, including the above Pólya conjecture. A particular conjecture of Yau's, on the control of the size of level sets of eigenfunctions by the value of the corresponding eigenvalue, was resolved by Alexander Logunov and Eugenia Malinnikova, who were awarded the 2017 Clay Research Award in part for their work.


Discrete and computational geometry

Xianfeng Gu and Yau considered the numerical computation of
conformal map In mathematics, a conformal map is a function (mathematics), function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-prese ...
s between two-dimensional manifolds (presented as discretized meshes), and in particular the computation of uniformizing maps as predicted by the
uniformization theorem In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generali ...
. In the case of genus-zero surfaces, a map is conformal if and only if it is harmonic, and so Gu and Yau are able to compute conformal maps by direct minimization of a discretized Dirichlet energy. In the case of higher genus, the uniformizing maps are computed from their gradients, as determined from the Hodge theory of closed and harmonic 1-forms. The main work is thus to identify numerically effective discretizations of the classical theory. Their approach is sufficiently flexible to deal with general surfaces with boundary. With Tony Chan, Paul Thompson, and Yalin Wang, Gu and Yau applied their work to the problem of matching two brain surfaces, which is an important issue in
medical imaging Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to revea ...
. In the most-relevant genus-zero case, conformal maps are only well-defined up to the action of the Möbius group. By further optimizing a Dirichlet-type energy which measures the mismatch of brain landmarks such as the central sulcus, they obtained mappings which are well-defined by such neurological features. In the field of
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, Fan Chung and Yau extensively developed analogues of notions and results from Riemannian geometry. These results on differential Harnack inequalities, Sobolev inequalities, and heat kernel analysis, found partly in collaboration with Ronald Graham and Alexander Grigor'yan, were later written into textbook form as the last few chapters of her well-known book "Spectral Graph Theory". Later, they introduced a Green's function as defined for graphs, amounting to a pseudo-inverse of the graph Laplacian. Their work is naturally applicable to the study of hitting times for
random walk In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some Space (mathematics), mathematical space. An elementary example of a rand ...
s and related topics. In the interest of finding general graph-theoretic contexts for their results, Chung and Yau introduced a notion of Ricci-flatness of a graph. A more flexible notion of Ricci curvature, dealing with
Markov chain In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally ...
s on
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s, was later introduced by Yann Ollivier. Yong Lin, Linyuan Lu, and Yau developed some of the basic theory of Ollivier's definition in the special context of graph theory, considering for instance the Ricci curvature of Erdős–Rényi random graphs. Lin and Yau also considered the ''curvature–dimension inequalities'' introduced earlier by Dominique Bakry and Michel Émery, relating it and Ollivier's curvature to Chung–Yau's notion of Ricci-flatness. They were further able to prove general lower bounds on Bakry–Émery and Ollivier's curvatures in the case of locally finite graphs.


Honors and awards

Yau has received honorary professorships from many Chinese universities, including Hunan Normal University,
Peking University Peking University (PKU) is a Public university, public Types of universities and colleges in China#By designated academic emphasis, university in Haidian, Beijing, China. It is affiliated with and funded by the Ministry of Education of the Peop ...
, Nankai University, and Tsinghua University. He has honorary degrees from many international universities, including
Harvard University Harvard University is a Private university, private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the History of the Puritans in North America, Puritan clergyma ...
,
Chinese University of Hong Kong The Chinese University of Hong Kong (CUHK) is a public university, public research university in Sha Tin, New Territories, Hong Kong. Established in 1963 as a federation of three university college, collegesChung Chi College, New Asia Coll ...
, and
University of Waterloo The University of Waterloo (UWaterloo, UW, or Waterloo) is a Public university, public research university located in Waterloo, Ontario, Canada. The main campus is on of land adjacent to uptown Waterloo and Waterloo Park. The university also op ...
. He is a foreign member of the National Academies of Sciences of China, India, and Russia. His awards include: * 1975–1976, Sloan Fellow. * 1981, Oswald Veblen Prize in Geometry. * 1981, John J. Carty Award for the Advancement of Science,
United States National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the Nati ...
. * 1982, Fields Medal, for "his contributions to partial differential equations, to the Calabi conjecture in
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, to the positive mass conjecture of general relativity theory, and to real and complex Monge–Ampère equations." * 1982, elected to the
American Academy of Arts and Sciences The American Academy of Arts and Sciences (The Academy) is one of the oldest learned societies in the United States. It was founded in 1780 during the American Revolution by John Adams, John Hancock, James Bowdoin, Andrew Oliver, and other ...
* 1982,
Guggenheim Fellowship Guggenheim Fellowships are Grant (money), grants that have been awarded annually since by the John Simon Guggenheim Memorial Foundation, endowed by the late Simon Guggenheim, Simon and Olga Hirsh Guggenheim. These awards are bestowed upon indiv ...
. * 1984–1985, MacArthur Fellow. * 1991, Humboldt Research Award, Alexander von Humboldt Foundation, Germany. * 1993, elected to the United States
National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, NGO, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the ...
* 1994,
Crafoord Prize The Crafoord Prize () is an annual science prize established in 1980 by Holger Crafoord, a Swedish industrialist, and his wife Anna-Greta Crafoord following a donation to the Royal Swedish Academy of Sciences. It is awarded jointly by the Acade ...
. * 1997,
United States The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
National Medal of Science The National Medal of Science is an honor bestowed by the President of the United States to individuals in science and engineering who have made important contributions to the advancement of knowledge in the fields of behavioral science, behavior ...
. * 2003, China International Scientific and Technological Cooperation Award, for "his outstanding contribution to PRC in aspects of making progress in sciences and technology, training researchers." * 2010, Wolf Prize in Mathematics, for "his work in geometric analysis and mathematical physics". * 2018, Marcel Grossmann Awards, "for the proof of the positivity of total mass in the theory of general relativity and perfecting as well the concept of quasi-local mass, for his proof of the Calabi conjecture, for his continuous inspiring role in the study of black holes physics." * 2023, Shaw Prize in Mathematical Sciences.Shaw Prize 2023
/ref>


Major publications

Research articles. Yau is the author of over five hundred articles. The following, among the most cited, are surveyed above: Survey articles and publications of collected works. Textbooks and technical monographs. Popular books.


References


External links


''Center of Mathematical Sciences at Zhejiang University'': commentary by various mathematicians on Yau

Discover Magazine Interview, June 2010 issue

Interview
(11 pages long in
Traditional Chinese A tradition is a system of beliefs or behaviors (folk custom) passed down within a group of people or society with symbolic meaning or special significance with origins in the past. A component of cultural expressions and folklore, common examp ...
)
Yau's autobiographical account
(mostly English, some Chinese) * *


UC Irvine courting Yau with a $2.5 million professorship


{{DEFAULTSORT:Yau, Shing-Tung 1949 births 20th-century American mathematicians 21st-century American mathematicians Academic staff of Zhejiang University Alumni of the Chinese University of Hong Kong American people of Chinese descent American relativity theorists Chinese emigrants to Hong Kong Differential geometers Educators from Guangdong Fellows of the American Mathematical Society Fields Medalists Foreign members of the Russian Academy of Sciences Foreign members of the Chinese Academy of Sciences Hakka scientists Harvard University faculty Hong Kong emigrants to the United States Hong Kong people of Hakka descent Institute for Advanced Study faculty Living people MacArthur Fellows Mathematicians from Guangdong Members of Academia Sinica Members of the Committee of 100 Members of the United States National Academy of Sciences National Medal of Science laureates People from Shantou Stanford University faculty Stateless people UC Berkeley College of Letters and Science alumni University of California, San Diego faculty Wolf Prize in Mathematics laureates