HOME

TheInfoList



OR:

In mathematics, a shear matrix or transvection is an
elementary matrix In mathematics, an elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation. The elementary matrices generate the general linear group GL''n''(F) when F is a field. Left multiplication (pre-multipl ...
that represents the
addition Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or ''sum'' of ...
of a multiple of one row or column to another. Such a
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
may be derived by taking the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial ...
and replacing one of the zero elements with a non-zero value. The name ''shear'' reflects the fact that the matrix represents a shear transformation. Geometrically, such a transformation takes pairs of points in a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
that are purely axially separated along the axis whose row in the matrix contains the shear element, and effectively replaces those pairs by pairs whose separation is no longer purely axial but has two vector components. Thus, the shear axis is always an
eigenvector In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denote ...
of ''S''.


Definition

A typical shear matrix is of the form S = \begin 1 & 0 & 0 & \lambda & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end. This matrix shears parallel to the ''x'' axis in the direction of the fourth dimension of the underlying vector space. A shear parallel to the ''x'' axis results in x' = x + \lambda y and y' = y. In matrix form: \begin x' \\ y' \end = \begin 1 & \lambda \\ 0 & 1 \end \begin x \\ y \end. Similarly, a shear parallel to the ''y'' axis has x' = x and y' = y + \lambda x. In matrix form: \beginx' \\ y' \end = \begin 1 & 0 \\ \lambda & 1 \end \begin x \\ y \end. In 3D space this matrix shear the YZ plane into the diagonal plane passing through these 3 points: (0, 0, 0) (\lambda, 1, 0) (\mu, 0, 1) S = \begin 1 & \lambda & \mu \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end. The
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
will always be 1, as no matter where the shear element is placed, it will be a member of a skew-diagonal that also contains zero elements (as all skew-diagonals have length at least two) hence its product will remain zero and will not contribute to the determinant. Thus every shear matrix has an
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ad ...
, and the inverse is simply a shear matrix with the shear element negated, representing a shear transformation in the opposite direction. In fact, this is part of an easily derived more general result: if ''S'' is a shear matrix with shear element \lambda, then ''Sn'' is a shear matrix whose shear element is simply ''n''\lambda. Hence, raising a shear matrix to a power ''n'' multiplies its shear factor by ''n''.


Properties

If ''S'' is an ''n'' × ''n'' shear matrix, then: * ''S'' has
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * H ...
''n'' and therefore is invertible * 1 is the only
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denot ...
of ''S'', so det ''S'' = 1 and trace ''S'' = ''n'' * the
eigenspace In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
of ''S'' (associated with the eigenvalue 1) has ''n''−1 dimensions. * ''S'' is defective * ''S'' is asymmetric * ''S'' may be made into a
block matrix In mathematics, a block matrix or a partitioned matrix is a matrix that is '' interpreted'' as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original ma ...
by at most 1 column interchange and 1 row interchange operation * the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
,
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
, or any higher order interior capacity of a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
is invariant under the shear transformation of the polytope's vertices.


Composition

Two or more shear transformations can be combined. If two shear matrices are \begin 1 & \lambda \\ 0 & 1 \end and \begin 1 & 0 \\ \mu & 1 \end then their composition matrix is \begin 1 & \lambda \\ 0 & 1 \end\begin 1 & 0 \\ \mu & 1\end = \begin 1 + \lambda\mu & \lambda \\ \mu & 1 \end, which also has determinant 1, so that area is preserved. In particular, if \lambda=\mu, we have \begin 1 + \lambda^2 & \lambda \\ \lambda & 1 \end, which is a
positive definite matrix In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a ...
.


Applications

* Shear matrices are often used in
computer graphics Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great deal ...
.Computer Graphics
Apueva A. Desai, pp. 162-164


See also

*
Transformation matrix In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation mapping \mathbb^n to \mathbb^m and \mathbf x is a column vector with n entries, then T( \mathbf x ) = A \mathbf x for some m \times n matrix ...


Notes


References

* {{DEFAULTSORT:Shear Matrix Matrices Linear algebra Sparse matrices