Shea Zellweger
   HOME

TheInfoList



OR:

Shea Zellweger (September 7, 1925 – August 7, 2022) was an American
semiotician Semiotics ( ) is the systematic study of sign processes and the communication of meaning. In semiotics, a sign is defined as anything that communicates intentional and unintentional meaning or feelings to the sign's interpreter. Semiosis is an ...
who served as Chair of the Psychology Department at the
University of Mount Union The University of Mount Union is a private liberal arts university in Alliance, Ohio, United States. Founded in 1846, the university was affiliated with the Methodist Church until 2019. It had an enrollment of 2,100 students as of 2023. History ...
from 1969 to 1992. Zellweger’s lifetime achievements and academic contributions to education continue to be significant. Zellweger was probably best known for his creation of a simpler and more mentally intuitive system of logic
notation In linguistics and semiotics, a notation system is a system of graphics or symbols, Character_(symbol), characters and abbreviated Expression (language), expressions, used (for example) in Artistic disciplines, artistic and scientific disciplines ...
called the Logic Alphabet. The Logic Alphabet, also known as the X-stem Logic Alphabet (XLA), is a notation system that contains a unique and visually iconographic approach to learning and performing
logic operation In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted by 1 and 0, whereas ...
s. Patents have been issued on its design in the United States, Canada and Japan.


Personal life and death

Zellweger was born in
Chicago, Illinois Chicago is the List of municipalities in Illinois, most populous city in the U.S. state of Illinois and in the Midwestern United States. With a population of 2,746,388, as of the 2020 United States census, 2020 census, it is the List of Unite ...
, on September 7, 1925. He received his Ph.D. in
Experimental Psychology Experimental psychology is the work done by those who apply Experiment, experimental methods to psychological study and the underlying processes. Experimental psychologists employ Research participant, human participants and Animal testing, anim ...
at
Temple University Temple University (Temple or TU) is a public university, public Commonwealth System of Higher Education, state-related research university in Philadelphia, Philadelphia, Pennsylvania, United States. It was founded in 1884 by the Baptist ministe ...
in 1966. His doctoral dissertation focused on early visual stimulation experience and its later effects on discrimination learning. Zellweger died in
Alliance, Ohio Alliance is a city in Stark County, Ohio, United States. The population was 21,672 at the 2020 United States census, 2020 census. It was established in 1854 by the merger of three smaller communities and was a manufacturing and railroad hub in t ...
, on August 7, 2022, at the age of 96.


Background

Zellweger’s background is a combination of formal education and extensive research in the fields of
Psychology Psychology is the scientific study of mind and behavior. Its subject matter includes the behavior of humans and nonhumans, both consciousness, conscious and Unconscious mind, unconscious phenomena, and mental processes such as thoughts, feel ...
,
Pedagogy Pedagogy (), most commonly understood as the approach to teaching, is the theory and practice of learning, and how this process influences, and is influenced by, the social, political, and psychological development of learners. Pedagogy, taken ...
,
Semiotics Semiotics ( ) is the systematic study of sign processes and the communication of meaning. In semiotics, a sign is defined as anything that communicates intentional and unintentional meaning or feelings to the sign's interpreter. Semiosis is a ...
and
Logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
. In 1949, Zellweger attended a summer seminar at the
Institute of General Semantics The Institute of General Semantics (IGS) is a not-for-profit corporation established in 1938 by Alfred Korzybski, to support research and publication on the topic of general semantics. The Institute publishes Korzybski's writings, including the se ...
with
Alfred Korzybski Alfred Habdank Skarbek Korzybski (; ; July 3, 1879 – March 1, 1950) was a Polish-American philosopher and independent scholar who developed a field called general semantics, which he viewed as both distinct from, and more encompassing than, ...
. In 1949–52, still in the era of Robert M. Hutchins and the Great Books Program, he earned his undergraduate degree at the University of Chicago. In 1975–76, he spent a year at the
Biological Computer Laboratory The Biological Computer Laboratory (BCL) was a research institute of the Department of Electrical Engineering at the University of Illinois Urbana-Champaign. It was founded on 1 January 1958, by then Professor of Electrical Engineering Heinz von Foe ...
,
University of Illinois at Urbana-Champaign The University of Illinois Urbana-Champaign (UIUC, U of I, Illinois, or University of Illinois) is a public land-grant research university in the Champaign–Urbana metropolitan area, Illinois, United States. Established in 1867, it is the f ...
, under the direction of
Heinz von Foerster Heinz von Foerster (; November 13, 1911 – October 2, 2002) was an Austrian-American scientist combining physics and philosophy, and widely attributed as the originator of second-order cybernetics. He was twice a Guggenheim fellow (1956–57 and ...
. In 1982, while on
sabbatical A sabbatical (from the Hebrew: (i.e., Sabbath); in Latin ; Greek: ) is a rest or break from work; "an extended period of time intentionally spent on something that’s not your routine job." The concept of the sabbatical is based on the Bi ...
leave at th
Peirce Edition Project
in Indianapolis (IUPUI), he examined and carefully reordered a 900 page section of manuscripts written by
Charles Sanders Peirce Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss (philosopher), Paul ...
entitled “The Simplest Mathematics” (1902). In 1989, he served the Peirce Edition Project again when he added to the proper sequencing of specific sections of Peirce’s extensive manuscripts. These multidisciplinary experiences contributed to the development, over a forty-year period, of hi
X-stem Logic Alphabet
Zellweger has been a respected academic speaker and author, especially in the fields of
Semiotics Semiotics ( ) is the systematic study of sign processes and the communication of meaning. In semiotics, a sign is defined as anything that communicates intentional and unintentional meaning or feelings to the sign's interpreter. Semiosis is a ...
and
Education Education is the transmission of knowledge and skills and the development of character traits. Formal education occurs within a structured institutional framework, such as public schools, following a curriculum. Non-formal education als ...
.


Publications

Zellweger’s publications, as well as hi
unpublished
materials, are extensive.
/ref> A general principle expressed throughout his writings is the need for conscious and deliberate efforts that focus on the sign design and sign engineering of any and all kinds of notation (e.g.
natural language A natural language or ordinary language is a language that occurs naturally in a human community by a process of use, repetition, and change. It can take different forms, typically either a spoken language or a sign language. Natural languages ...
and its specialized systems of logical, mathematical, chemical and musical notation). Moreover, his publications primarily center on the
formal language In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also c ...
of
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
and improving the structure of its symbols. Specifically, he focuses on the deliberate engineering of a
constructed language A constructed language (shortened to conlang) is a language whose phonology, grammar, orthography, and vocabulary, instead of having developed natural language, naturally, are consciously devised for some purpose, which may include being devise ...
for logic called th
X-stem Logic Alphabet
(XLA). He emphasizes, with the mounting global prevalence of computers or “logic machines”, the importance of adopting a higher
standard Standard may refer to: Symbols * Colours, standards and guidons, kinds of military signs * Standard (emblem), a type of a large symbol or emblem used for identification Norms, conventions or requirements * Standard (metrology), an object ...
for the way we write and communicate logic. He brings to light the importance of a carefully constructed user-friendly notation that would allow students, at earlier stages of
cognitive development Cognitive development is a field of study in neuroscience and psychology focusing on a child's development in terms of information processing, conceptual resources, perceptual skill, language learning, and other aspects of the developed adult bra ...
, to learn and incorporate the fundamental skills of logic. He further highlights the importance of purposely designing our symbols of notation to be as cognitively
ergonomic Ergonomics, also known as human factors or human factors engineering (HFE), is the application of psychological and physiological principles to the engineering and design of products, processes, and systems. Primary goals of human factors engi ...
as possible, while simultaneously possessing multiple layers of rich content. The fundamental and applied principles of
semiotic Semiotics ( ) is the systematic study of semiosis, sign processes and the communication of Meaning (semiotics), meaning. In semiotics, a Sign (semiotics), sign is defined as anything that communicates intentional and unintentional meaning or feel ...
engineering are exemplified throughout his publications.


Contribution

Zellweger’s contribution to the field of logic is best demonstrated through his development of the X-stem Logic Alphabet (XLA). The XLA notation is a highly advanced extension of both
Charles Sanders Peirce Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss (philosopher), Paul ...
’s box-X notation (1902) and
Warren Sturgis McCulloch Warren Sturgis McCulloch (November 16, 1898 – September 24, 1969) was an American neurophysiologist and cybernetician known for his work on the foundation for certain brain theories and his contribution to the cybernetics movement.Ken Aizawa ...
’s dot-X notation (1942). It could be said that XLA (1961–62) is the evolutionary product of the comprehensive work of Peirce, McCulloch, and Zellweger, or PMZ as an acronym. The standard notation used today (dot
Logical conjunction In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or ...
, vee
Logical disjunction In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is ...
, horseshoe
Material conditional The material conditional (also known as material implication) is a binary operation commonly used in logic. When the conditional symbol \to is interpreted as material implication, a formula P \to Q is true unless P is true and Q is false. M ...
representing and, or, if) is a lingering, overly abstract, unsystematically selected set of symbols that was primarily developed and used by Peano, Whitehead, and Russell, or by common acronym PWR. This already exposes the primary weakness. Dot, vee, horseshoe do not carry any information that identifies, specifies, and encodes the truth tables they represent, namely, TFFF, TTTF, and TFTT. In marked contrast, XLA is an intentionally engineered set of sixteen iconographic letter shape symbols specifically designed to improve the efficiency of learning and performing
logical operation In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, th ...
s. Serving as a system of highly abbreviated mini truth tables, Zellweger’s claim is that XLA is not only much easier to learn. It is also much easier to use. In fact, when ten-base numerals are used without the abacus and when XLA is used without written laid out rows and columns of truth tables, ordinary operations in both notations are easier to perform during the act of computational writing. It can be said that the current PWR symbols are to logic what
Roman Numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, eac ...
are to arithmetic. Roman Numerals (I, II, III) were cumbersome to use and only maintained a dominant role in arithmetic until 1202, when
Leonardo Fibonacci Leonardo Bonacci ( – ), commonly known as Fibonacci, was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages". The name he is commonly called, ''Fibonacci'', is f ...
in his work
Liber Abaci The or (Latin for "The Book of Calculation") was a 1202 Latin work on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. It is primarily famous for introducing both base-10 positional notation and the symbols known as Arabic n ...
, demonstrated that calculations with Hindu-
Arabic numerals The ten Arabic numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) are the most commonly used symbols for writing numbers. The term often also implies a positional notation number with a decimal base, in particular when contrasted with Roman numera ...
(1, 2, 3) were far more efficient. The lack of mental and written efficiency in the use of traditional PWR symbols may be because they are not icons. Therefore, these extremely abstract symbols cannot in writing visually depict the truth tables themselves, the simple
geometric Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
forms, the notational
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
relations, and the isomorphic sets of interrelations inherent in logic. Conversely, the XLA symbols are iconographic and they possess a shape value. This enables complex logical operations to be performed through easy flips and rotations of the letter shape symbols themselves. By design, the letter shape of each X-stem Logic Alphabet symbol visually embodies and displays its individual underlying logic
truth table A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arg ...
. In other words, after the simple and exact truth table code in the deep structure of XLA has been learned, operations performed on the letter shape symbols are equivalent to logical operations acting on highly abbreviated sets of mini truth tables. Consequently, those using XLA never have the need to interrupt their calculations to check rows and columns of laid out truth tables. This basic and central advantage of XLA over PWR is often not fully recognized, even by practiced logicians. Nonetheless, systems of notation evolve and improve over time (e.g. Roman Numerals to the Decimal System and Imperial Units to the Metric System). In brief, XLA is described in two steps: (1) give the 16 binary connectives the right geometry, the right shape value anatomy; and (2) add the transformational physiology, namely, apply the algebra of simple symmetry groups to the 16 iconic letter shape symbols. Change comes with a whisper. This whisper presents a triple isomorphism. The mental operations are the same as the symmetry operations are the same as the logical operations. Said the other way around, the logical operations are the same as the symmetry operations are the same as the mental operations. Said again in a different order, the logical operations are the same as the mental operations are the same as the symmetry operations. Here we have a prime example of cognitive ergonomics at its best. The single act of performing any one automatically performs the other two. Whether or not the (PMZ) (XLA) system, or something similar to it, replaces the traditional PWR symbols remains to be seen. Nonetheless, for researchers and
semioticians Semiotics ( ) is the systematic study of sign processes and the communication of meaning. In semiotics, a sign is defined as anything that communicates intentional and unintentional meaning or feelings to the sign's interpreter. Semiosis is an ...
, Zellweger's contributions to logic notation will most likely play a valuable role in future developments.


Teaching

Zellweger’s teaching system, for logic, integrates the developmental and interactive approaches of Fröbel,
Montessori The Montessori method of education is a type of educational method that involves children's natural interests and activities rather than formal teaching methods. A Montessori classroom places an emphasis on hands-on learning and developing ...
, and
Piaget Piaget () may refer to: People with the surname * Édouard Piaget (18171910), Swiss entomologist * Jean Piaget (18961980), Swiss developmental psychologist * Paul Piaget (disambiguation), several people * Solange Piaget Knowles (born 1986), Ameri ...
. This is accomplished through the use of educational tools and models that predominantly focus on visual and kinesthetic
learning modalities Learning styles refer to a range of theories that aim to account for differences in individuals' learning. Although there is ample evidence that individuals express personal preferences on how they prefer to receive information, few studies have fo ...
. At every level in the educational ladder, students of Zellweger’s system learn in a natural and intuitive way through the use of sensory-motor exercises and a variety of interactive geometric models. (See video of Zellweger’s teaching models at the Museum of Jurassic Technolog

These models, at the most advanced level, become extremely complex and beautiful. Each X-stem Logic Alphabet symbol can be easily flipped or rotated, by eye-hand coordination, through a series of simple symmetry transformations. When a student can visually and manually observe the
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
and the network of
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
relationships among all 16 binary connectives of two-valued logic, it then becomes far easier for them to perform what are normally considered to be highly abstract logical operations. Zellweger’s publications and models permit students to literally “see”, “touch”, “play with”, “work with”, and “think about” the natural beauty of logic. His work is now on display at th
Museum of Jurassic Technology
Culver City, California. (See Flickr image


References


External links

*
Photos of Additional XLA Diagrams

Interview with Shea Zellweger by Christine Wertheim

X-stem Logic Alphabet Homepage
{{DEFAULTSORT:Zellweger, Shea 1925 births 2022 deaths American semioticians Philosophers from Illinois University of Mount Union faculty People from Chicago