Sevier Orogeny
   HOME

TheInfoList



OR:

The Sevier orogeny was a mountain-building event that affected western North America from northern Canada to the north to Mexico to the south. The Sevier orogeny was the result of
convergent boundary A convergent boundary (also known as a destructive boundary) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a ...
tectonic activity, and deformation occurred from approximately 160 million years (Ma) ago to around 50 Ma. This
orogeny Orogeny () is a mountain-mountain formation, building process that takes place at a convergent boundary, convergent plate margin when plate motion compresses the margin. An or develops as the compressed plate crumples and is tectonic uplift, u ...
was caused by the subduction of the oceanic Farallon Plate underneath the continental North American Plate. Crustal thickening that led to mountain building was caused by a combination of compressive forces and conductive heating initiated by subduction, which led to deformation. The Sevier River area of central
Utah Utah is a landlocked state in the Mountain states, Mountain West subregion of the Western United States. It is one of the Four Corners states, sharing a border with Arizona, Colorado, and New Mexico. It also borders Wyoming to the northea ...
is the namesake of this event.


Extent

The Sevier Fold and Thrust Belt extends from southern California near the Mexican border to Canada. Basin and Range faults cut the older Sevier thrust faults. The Sevier orogeny was preceded by several other mountain-building events including the
Nevadan orogeny The Nevadan orogeny occurred along the western margin of North America during the Late Jurassic to Early Cretaceous approximately 155 Ma to 145 Ma. Throughout the duration of this orogeny there were at least two different kinds of orogenic process ...
, the Sonoman orogeny, and the Antler orogeny, and partially overlapped in time and space with the
Laramide orogeny The Laramide orogeny was a time period of mountain building in western North America, which started in the Late Cretaceous, 80 to 70 million years ago, and ended 55 to 35 million years ago. The exact duration and ages of beginning and end of the o ...
.


Sevier or Laramide?

Early Sevier thrusting began well before initial Laramide deformation. However, there is evidence that suggests late Sevier faults were active during the early Laramide.Anderson, L.P., and Dinter, D.A., 2010, Deformation and sedimentation in the southern Sevier foreland, Red Hills, southwestern Utah, in Carney, S.M., Tabet, D.E., and Johnson, C.L., editors, Geology of south-central Utah: Utah Geological Association Publication 39, p. 338–366.Biek, R.F., Rowley, P.D., Anderson, J.J., Maldonado, F., Moore, D.W., Hacker, D.B., Eaton, J.G., Hereford, R., Filkorn, H.F., and Matyjasik, B., 2015, Geologic map of the Panguitch 30′ x 60′ quadrangle, Garfield, Iron, and Kane Counties, Utah: Utah Geological Survey Map, 4 plates, scale 1:62,500  The majority of Sevier deformation occurred west of Laramide deformation, but there is some geographic overlap between the eastern Sevier margin and the western Laramide margin. In southwestern Utah, Sevier thrusts may have remained active until the Eocene, while Laramide deformation began in the
Late Cretaceous The Late Cretaceous (100.5–66 Ma) is the more recent of two epochs into which the Cretaceous Period is divided in the geologic time scale. Rock strata from this epoch form the Upper Cretaceous Series. The Cretaceous is named after ''cre ...
. Since the Sevier and Laramide orogenies occurred at similar times and places, they are sometimes confused. In general the Sevier orogeny defines an older, more western compressional event that took advantage of weak bedding planes in overlying
Paleozoic The Paleozoic ( , , ; or Palaeozoic) Era is the first of three Era (geology), geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic (the last era of the Proterozoic Eon) and ends 251.9 Ma a ...
and
Mesozoic The Mesozoic Era is the Era (geology), era of Earth's Geologic time scale, geological history, lasting from about , comprising the Triassic, Jurassic and Cretaceous Period (geology), Periods. It is characterized by the dominance of archosaurian r ...
sedimentary rock. As the crust was shortened, pressure was transferred eastward along the weak sedimentary layers, producing “ thin-skinned
thrust fault A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks. Thrust geometry and nomenclature Reverse faults A thrust fault is a type of reverse fault that has a dip of 45 degrees or less. I ...
s that generally get younger to the east. In contrast, the Laramide orogeny produced “basement-cored” uplifts that often took advantage of pre-existing faults that formed during
rifting In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear Fault (geology), downfaulted depression, called a graben, or more commonly ...
in the late Precambrian during the breakup of the supercontinent
Rodinia Rodinia (from the Russian родина, ''rodina'', meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). wer ...
or during the Ancestral Rocky Mountains orogeny.


Geologic structures

The Sevier orogenic belt consisted of a series of thin plates along gently dipping west thrust sheets and moving from west to east.Burtner, R.G. and Nigrini, A., 1994, Thermochronology of the Idaho-Wyoming thrust belt during the Sevier Orogeny; a new, calibrated, multiprocess thermal model, AAPG Bulletin, Vol. 78, Issue 10, pp. 1586-1612. These thin skinned thrusts moved late
Precambrian The Precambrian ( ; or pre-Cambrian, sometimes abbreviated pC, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of t ...
to
Mesozoic The Mesozoic Era is the Era (geology), era of Earth's Geologic time scale, geological history, lasting from about , comprising the Triassic, Jurassic and Cretaceous Period (geology), Periods. It is characterized by the dominance of archosaurian r ...
age rock of the Cordilleran passive margin east. The Sevier meets the Laramide orogenic belt on its eastern side. The Sevier and Laramide combination is similar to the modern day Andean margin in
Chile Chile, officially the Republic of Chile, is a country in western South America. It is the southernmost country in the world and the closest to Antarctica, stretching along a narrow strip of land between the Andes, Andes Mountains and the Paci ...
. They are comparable because the younger Laramide faults and structures were a geometric response to the shallow dipping Sevier thrusts.Craddock, J.P. and van der Plujim, B.A., 1999, Sevier-Laramide deformation of the continental interior from calcite twinning analysis, west-central North, Tectonophysics, Vol. 205, Issue 1-3, pp. 275-286. The location of the eastern edge of the Sevier orogeny was determined by conglomerates largely made up of boulders that would have been shed from the eastern and steepest edge of the rising mountains. Such conglomerates can be seen throughout Utah in Echo Canyon, the Red Narrows in Spanish Fork Canyon, and in Leamington Canyon near
Delta, Utah Delta is the largest city in Millard County, Utah, Millard County, Utah, United States. It is located in the northeastern area of Millard County along the Sevier River and is surrounded by farmland. The population was 3,622 at the 2020 United St ...
. Today Sevier faults at the surface have been broken up and tilted steeply from their original gently dipping positions due to the extension of the
Basin and Range Basin and range topography is characterized by alternating parallel mountain ranges and valleys. It is a result of crustal extension due to mantle upwelling, gravitational collapse, crustal thickening, or relaxation of confining stresses. The e ...
faulting. The earliest thrusts of the Sevier are located furthest west with each newer thrust cutting the older thrust. This pattern caused the older thrusts to ride on top of the younger thrusts as they moved eastward. The Paris-Willard thrust in Utah was determined to be the oldest thrust in the series using this pattern. The youngest thrust is the Hogback in Wyoming.Hintze, L., 2005, Utah’s Spectacular Geology, Department of Geology, Brigham Young University, pp. 57, 60-62, 65. The Sevier thrust belt in Utah can be divided in two, north of
Salt Lake City Salt Lake City, often shortened to Salt Lake or SLC, is the capital and most populous city of the U.S. state of Utah. It is the county seat of Salt Lake County, the most populous county in the state. The city is the core of the Salt Lake Ci ...
and South of Salt Lake City. The thrusts to the north are much better understood because oil and gas are often associated with them. The northern portion runs through present day Utah, Idaho, and Wyoming. The southern portion stops around
Las Vegas Las Vegas, colloquially referred to as Vegas, is the most populous city in the U.S. state of Nevada and the county seat of Clark County. The Las Vegas Valley metropolitan area is the largest within the greater Mojave Desert, and second-l ...
. The total crustal shortening of the northern portion was roughly 60 miles. The Sevier belt left behind many distinctive geologic features in the Wyoming and Utah region, namely recesses and salients. Transverse zones can accompany thrust faults connecting the segments of the belt. One such zone is the Charleston transverse zone linking the Provo salient to the southern arm of the Uinta/Cottonwood arch. Although the Uinta/Cottonwood arch is a Laramide structure the Sevier helped the arch form. Another important zone is the Mount Raymond transverse zone connecting the Wyoming salient and the northern arm of the arch.Paulsen, T. and Marshak, S., 1999, Origin of the Uinta Recess, Sevier fold-thrust belt, Utah; influence of basin and architecture on fold-thrust belt geometry, Tectonophysics, Vol. 312, Issue 2-4, pp. 203-216. While continental margins are typically the most deformed in orogenic events, the interior of continental plates can also deform. In the Sevier-Laramide orogenic events evidence for interior plate deformation includes folds,
cleavage Cleavage may refer to: Science * Cleavage (crystal), the way in which a crystal or mineral tends to split * Cleavage (embryo), the division of cells in an early embryo * Cleavage (geology), foliation of rock perpendicular to stress, a result of ...
and joint fabrics, distorted
fossils A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
, persistent
faulting In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic ...
, and calcite twinning.


How and when

The Sevier fold and thrust belt was active between late
Jurassic The Jurassic ( ) is a Geological period, geologic period and System (stratigraphy), stratigraphic system that spanned from the end of the Triassic Period million years ago (Mya) to the beginning of the Cretaceous Period, approximately 143.1 Mya. ...
(201 - 145 Mya) through
Eocene The Eocene ( ) is a geological epoch (geology), epoch that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the Paleogene Period (geology), Period in the modern Cenozoic Era (geology), Era. The name ''Eocene'' comes ...
(56 - 34 Mya) time.Taylor, W.J., Bartley, J.M., Martin, M.W., Geissman, J.W., Walker, J.D., Armstrong, P.A., and Fryxell, J.E., 2000, Relations between hinterland and foreland shortening: Sevier orogeny, central North America Cordillera, Tectonophysics, Vol. 19, Issue 6, pp. 1124-1143. The actual age of initiation of the belt is not entirely agreed upon by researchers. However, Sevier deformation had begun by the Jurassic. Deformation in the southern portion of the Sevier fold and thrust belt began around 160 Ma. Strain was transferred eastward to the Keystone thrust by 99 Ma. In northern Utah, the Willard thrust sheet was emplaced around 120 Ma. Strain was progressively transferred to the Hogsback Thrust in western Wyoming. Faults near the leading edge of the Sevier remained active until at least the Eocene. At this time the elevated crust ran into the
Colorado Plateau The Colorado Plateau is a physiographic and desert region of the Intermontane Plateaus, roughly centered on the Four Corners region of the Southwestern United States. This plateau covers an area of 336,700 km2 (130,000 mi2) within w ...
. The collision resulted in lateral spreading of deformation and led to a weakened
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time ...
and crustal thickening.
Metamorphism Metamorphism is the transformation of existing Rock (geology), rock (the protolith) to rock with a different mineral composition or Texture (geology), texture. Metamorphism takes place at temperatures in excess of , and often also at elevated ...
due to the crustal heating and thickening is prevalent between 90 and 70 Ma in the present
Great Basin The Great Basin () is the largest area of contiguous endorheic watersheds, those with no outlets to the ocean, in North America. It spans nearly all of Nevada, much of Utah, and portions of California, Idaho, Oregon, Wyoming, and Baja Californi ...
region.Livacarri, R.F. and Perry, F.V., 1993, Isotopic evidence for preservation of Cordilleran lithospheric mantle during the Sevier-Laramide Orogeny, Western-United States, Geology oulder Vol. 21, Issue 8, pp. 719-722.


Studies


Transverse zones and the Uinta recess

Parallel thrust faults and folds make up a fold-thrust belt on a regional scale. At the local scale segments of the belt are connected by transverse zones. The Charleston transverse zone mentioned earlier runs perpendicular to the thrust faults within the Sevier belt. It has been debated among geologists if this transverse zone developed during the Sevier orogeny or the Uinta/Cottonwood arch formation during the
Laramide orogeny The Laramide orogeny was a time period of mountain building in western North America, which started in the Late Cretaceous, 80 to 70 million years ago, and ended 55 to 35 million years ago. The exact duration and ages of beginning and end of the o ...
.Paulsen, T. and Marshak, S., 1998, Charleston transverse zone, Wasatch Mountains, Utah; structure of the Provo Salient’s northern margin, Sevier fold-thrust belt, Geological Society of America Bulletin, Vol. 116, Issue 4, pp. 512-522. Mapping Sevier thrusting in the
Basin and Range Province The Basin and Range Province is a vast United States physiographic region, physiographic region covering much of the inland Western United States and Northern Mexico, northwestern Mexico. It is defined by unique basin and range topography, charac ...
suggests Sevier structures curve around the Uinta/Cottonwood arch defining the Uinta recess. Looking closely at Sevier faults in American Fork Canyon indicate that these faults are the oldest in the Charleston transverse zone suggested by cross cutting relationships observed in the area. The Basin and Range Province extending across
Nevada Nevada ( ; ) is a landlocked state in the Western United States. It borders Oregon to the northwest, Idaho to the northeast, California to the west, Arizona to the southeast, and Utah to the east. Nevada is the seventh-most extensive, th ...
, into western
Utah Utah is a landlocked state in the Mountain states, Mountain West subregion of the Western United States. It is one of the Four Corners states, sharing a border with Arizona, Colorado, and New Mexico. It also borders Wyoming to the northea ...
, and south into Mexico now consists of N-S normal faulting due to crustal extension. If these normal faults show any extension in late
Eocene The Eocene ( ) is a geological epoch (geology), epoch that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the Paleogene Period (geology), Period in the modern Cenozoic Era (geology), Era. The name ''Eocene'' comes ...
to early
Miocene The Miocene ( ) is the first epoch (geology), geological epoch of the Neogene Period and extends from about (Ma). The Miocene was named by Scottish geologist Charles Lyell; the name comes from the Greek words (', "less") and (', "new") and mea ...
, this could be evidence the Sevier orogenic event collapsing after deactivation. Thickening of the crust due to Sevier and Laramide faulting is thought to have led to current Basin and Range extension throughout the Cenozoic.Livacarri, R.F., 1991, Role of crustal thickening and extensional collapse in the tectonic evolution of the Sevier-Laramide Orogeny, Western United States, Geology oulder Vol. 19, Issue 11, pp. 1104-1107. This could have caused the Charleston thrust fault to reactivate as an extensional fault. The Charleston transverse zone contained high angle faults which suggests it initiated as a response to connecting the low angle thrust faults of the Sevier. The Charleston transverse zone outlines a main sidewall ramp that would have been part of the Sevier belt. To the north of the Uinta/Cottonwood arch during the Sevier orogeny there was a basement high area gently dipping to the north identified by
isopach An isopach map () illustrates thickness variations within a tabular unit, layer or stratum. Isopachs are contour lines of equal thickness over an area. Isopach maps are utilized in hydrographic survey, stratigraphy, sedimentology, structural geolo ...
maps. Thus sediment thickened quickly to the south. To the north strata changed gradually throughout the thrust and a gradual curve developed around the Wyoming salient and to the south around the Provo salient. The Charleston and Mount Raymond transverse zones formed the Uinta recess indicating the recess was initiated during the Sevier orogeny. The results were interpreted to support the Charleston transverse zone forming during the Sevier orogeny to accommodate geometric changes along strike of the thrusts. The zone served as a linking tool of the various segments of the orogeny. The transverse zone varied throughout the region in terms of depth and displacement. The zone was later tilted and was reactivated through crustal extension. Results also support the Uinta recess forming during the Sevier orogeny due to similar geometric crustal accommodation. Displacement on Sevier aged thrust faults caused the shaping of the curvature of the Uinta recess prior to uplift of the Uinta/Cottonwood arch.


Related thrust belts

Focusing on the southern portion of the Sevier thrust belt many thrust faults can be found. One thrust system is known as the Garden Valley thrust system in the central Nevada thrust belt. Thrusts within this system include the Pahranagat, Mount Irish, and Golden Gate thrusts. These thrusts were correlated with the southward Gass Peak thrust. The Gass Peak thrust is located in the Las Vegas Range and is a Sevier age structure. This thrust may have been responsible for the largest slip of the major belt along that latitude. These thrusts were located all along the same strike. This region showed small scale extension in the
Cenozoic The Cenozoic Era ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterized by the dominance of mammals, insects, birds and angiosperms (flowering plants). It is the latest of three g ...
due to reactivation of the thrusts. Such a correlation suggests that the Garden Valley thrust system has a direct link to the Sevier thrust belt. The interpretation of this data led to the central Nevada thrust belt as being an interior section of the Sevier. This correlation provides evidence that the Sevier thrust belt was a result of compression moving eastward through the North American plate.


Cordilleran and Sevier orogenesis relationships

Thinning of the Cordilleran has previously been thought to be evidence and reason for flat subduction in the Sevier and Laramide orogenic events. However, isotopic data suggests that preservation of Cordilleran lithosphere implies Cordilleran thinning is not a sufficient answer for Sevier and Laramide flat subduction. This implies thinning and shearing of the Cordilleran was confined to the fore-arc region. Data suggests throughout the Sevier-Laramide thrusting the crust was also uplifted and extended. The modern Chilean subduction is thought to be a parallel model of the Sevier and Laramide events so there are possibly answers to this question in this modern model. Explanations may include a combination of plate motion rates increasing, the underriding oceanic plate becoming younger as the older portion subducts, and thus the underriding plate being hotter and more buoyant.


Crustal shortening

A study on calcite twinning and carbonate relationships with the Sevier orogenic belt showed that shortening directions were parallel to the thrust faulting, which was an E-W direction. Differential stress magnitudes determined from calcite twinning showed a decreasing trend exponentially toward the
craton A craton ( , , or ; from "strength") is an old and stable part of the continental lithosphere, which consists of Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging and rifting of contine ...
. Differential stresses causing compressional deformation in the Sevier thrust were greater than 150 MPa. The E-W contraction during the Sevier changed to roughly N-S oblique during the Laramide orogenic event. Sevier shortening has been recorded throughout much of the western United States as far east as
Minnesota Minnesota ( ) is a U.S. state, state in the Upper Midwestern region of the United States. It is bordered by the Canadian provinces of Manitoba and Ontario to the north and east and by the U.S. states of Wisconsin to the east, Iowa to the so ...
in the Cretaceous Greenhorn Limestone as preserved by calcite twinning. The distance of stress transfer is roughly equivalent to more than 2000 km. The E-W shortening shown in calcite twinning of the Sevier is parallel to today's principal stresses in the western interior of the North American plate.


Sevier volcanism

Voluminous volcanism is also associated with the Sevier Orogeny. Volcanic activity can be observed at modern subduction zones, (such as along the west coast of South America) like the one that caused the Sevier Orogeny. Several volcanic flare-ups occurred in the Sierra Nevada arc, associated with the Sevier Orogeny: one from 170 Ma to 150 Ma, and one from 100 Ma to 85 Ma. Volcanic centers migrated generally eastward during the progression of the Sevier and the transition to Laramide deformation, and by the late Cretaceous volcanism related to Farallon Plate subduction could be found as far east as the Colorado Mineral Belt, east of the leading edge of the Sevier fold and thrust belt.


Foreland sedimentation

As Sevier thrust faults were uplifted, thrust sheet erosion occurred; those eroded sediments were then deposited where accommodation space existed. Dynamic subsidence and flexure due to crustal loading created space where sediments could accumulate. As the Sevier thrusting migrated eastward, the sedimentary basins also migrated eastward. Balanced cross-sections show that significant erosion of this Sevier-age synorogenic sediment has occurred.


See also

*
Basin and range topography Basin and range topography is characterized by alternating parallel mountain ranges and valleys. It is a result of crustal extension due to mantle upwelling, gravitational collapse, crustal thickening, or relaxation of confining stresses. The e ...
*
Geology of the Rocky Mountains The geology of the Rocky Mountains is that of a discontinuous series of mountain ranges with distinct geological origins. Collectively these make up the Rocky Mountains, a mountain system that stretches from Northern British Columbia through cen ...


References

* {{refend Orogenies of North America Cretaceous North America Eocene North America Paleocene North America Cretaceous orogenies Paleogene orogenies Eocene geology Paleocene geology Cretaceous British Columbia Cretaceous Colorado Cretaceous Montana Cretaceous geology of Utah Cretaceous geology of Wyoming Paleogene British Columbia Paleogene Colorado Paleogene Montana Paleogene geology of Utah Paleogene geology of Wyoming