HOME

TheInfoList



OR:

Campaniform sensilla are a class of
mechanoreceptor A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are located on sensory neurons that convert mechanical pressure into action potential, electrical signals tha ...
s found in
insect Insects (from Latin ') are Hexapoda, hexapod invertebrates of the class (biology), class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (Insect morphology#Head, head, ...
s, which respond to local stress and strain within the animal's cuticle. Campaniform sensilla function as
proprioceptors Proprioception ( ) is the sense of self-movement, force, and body position. Proprioception is mediated by proprioceptors, a type of sensory receptor, located within muscles, tendons, and joints. Most animals possess multiple subtypes of propri ...
that detect mechanical load as resistance to muscle contraction, similar to mammalian
Golgi tendon organ The Golgi tendon organ (GTO) (also called Golgi organ, tendon organ, neurotendinous organ or neurotendinous spindle) is a proprioceptor – a type of sensory receptor that senses changes in muscle tension. It lies at the interface between a mus ...
s. Sensory feedback from campaniform sensilla is integrated in the control of posture and locomotion.


Structure

Each campaniform sensillum consists of a flexible dome, which is embedded in a spongy socket within the cuticle and innervated by the dendrites of a single bipolar sensory neuron (see schematic cross-section). Campaniform sensilla are often oval-shaped with long axes of about 5-10 μm (see SEM). Campaniform sensilla are distributed across the body surface of many insects. The fruit fly ''Drosophila melanogaster'', for example, has over 680 sensilla. Campaniform sensilla are located in regions where stress is likely to be high, including on the legs, antennae, wings, and
halteres ''Halteres'' (; singular ''halter'' or ''haltere'') (from , hand-held weights to give an impetus in leaping) are a pair of small club-shaped organs on the body of two Order (biology), orders of flying insects that provide information about ...
. Sensilla may occur alone, but sensilla with similar orientations are often grouped together.


Campaniform sensilla on legs

On the legs, groups of campaniform sensilla are located close to the joints on all segments except for the coxa (see leg schematic), with most sensilla located on the proximal trochanter. The number and location of sensilla on the legs varies little across individuals of the same species, and homologous groups of sensilla can be found across species.


Campaniform sensilla on wings and halteres

Campaniform sensilla typically occur on both sides of the wing (see wing schematic). The exact number and placement varies widely across species, likely mirroring differences in flight behavior. However, across species, most campaniform sensilla are found near the wing base. Computational models predict that this is an optimal location for sensing body rotations during flight, with sensing performance being robust to external perturbations and sensor loss. In Diptera such as ''Drosophila'', the highest density of campaniform sensilla is found at the base of the modified hind-wings, the halteres (see haltere schematic).


Function


Response properties

When cuticular deformations compress a campaniform sensillum, the socket edges (collar) indent the cuticular cap. This squeezes the dendritic tip of the sensory neuron and opens its mechanotransduction channels (from the TRP family), which leads to the generation of action potentials that are transmitted to the
ventral nerve cord The ventral nerve cord is a major structure of the invertebrate central nervous system. It is the functional equivalent of the vertebrate spinal cord. The ventral nerve cord coordinates neural signaling from the brain to the body and vice ve ...
, the insect analogue to the vertebrate spinal cord. The activity of campaniform sensilla was first recorded by John William Sutton Pringle in the late 1930s. Pringle also determined that the oval shape of many sensilla makes them directionally selective – they respond best to compression along their short axis. Thus, even neighboring sensilla may have very different sensitivities to strain depending on their orientation in the cuticle. For example, stick insects possess two groups of campaniform sensilla on the dorsal side of their legs' trochanter whose short axes are oriented perpendicularly to one another (see inset in leg schematic). As a result, one group (G3) responds when the leg is bent upwards, whereas the other group (G4) responds when the leg is bent downwards. Round campaniform sensilla can be sensitive in all directions or show directional sensitivity if the cap is asymmetrically coupled with the surrounding collar. The activity of campaniform sensilla may be slowly-adapting (tonic), signaling the magnitude of cuticular deformation, and/or rapidly adapting (phasic), signaling the rate of cuticular deformation. Based on their responses to white noise stimuli, campaniform sensilla may also be described more generally as signaling two features that approximate the derivative of each other. This suggests that the neural response properties of the sensilla are rather generic, and that functional specialization arises primarily from how the sensilla are embedded in the cuticle. In addition, activity adapts to constant loads and shows
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
(history dependence) in response to cyclic loading. Campaniform sensilla project directly to motor neurons and to various interneurons, which integrate their signals with signals from other proprioceptors. In this way, campaniform sensilla activity can affect the magnitude and timing of muscle contractions.


Function of leg campaniform sensilla

Campaniform sensilla on the legs are activated during standing and walking. Their sensory feedback is thought to reinforce muscle activity during the stance phase and to contribute to inter-leg coordination, much like sensory feedback from mammalian
Golgi tendon organ The Golgi tendon organ (GTO) (also called Golgi organ, tendon organ, neurotendinous organ or neurotendinous spindle) is a proprioceptor – a type of sensory receptor that senses changes in muscle tension. It lies at the interface between a mus ...
s. Feedback from leg campaniform sensilla is also important for the control of kicking and jumping.


Function of wing and haltere campaniform sensilla

Campaniform sensilla on the wings and halteres are activated as these structures oscillate back and forth during flight, with the phase of activation depending on the placement of the sensilla. The campaniform sensilla on the wing encode the wing's aerodynamic and inertial forces, whereas sensilla on the base of the haltere are thought to encode
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
s induced by body rotation during flight, allowing the structure to function as a
gyroscope A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining Orientation (geometry), orientation and angular velocity. It is a spinning wheel or disc in ...
. Feedback from wing and haltere campaniform sensilla is thought to mediate compensatory reflexes to maintain equilibrium during flight.


Computational models

To better understand the function of campaniform sensilla, computational models that mimic their response properties are being developed for use in simulations and robotics. On robotic legs, the models can filter input from engineered strain sensors "campaniform-sensilla-style" in real time. One advantage of this bio-inspired filtering is that it enables adaptation to load over time (see above), which makes strain sensors essentially self-calibrating to different loads carried by the robot.


References

{{DEFAULTSORT:Campaniform Sensilla Insect anatomy Sensory receptors es:Sensilia fr:Sensille ru:Сенсиллы членистоногих