In
knot theory
In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are ...
, the self-linking number is an
invariant
Invariant and invariance may refer to:
Computer science
* Invariant (computer science), an expression whose value doesn't change during program execution
** Loop invariant, a property of a program loop that is true before (and after) each iteratio ...
of
framed knot
In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of ...
s. It is related to the
linking number
In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Eu ...
of curves.
A framing of a
knot
A knot is an intentional complication in cordage which may be practical or decorative, or both. Practical knots are classified by function, including hitches, bends, loop knots, and splices: a ''hitch'' fastens a rope to another object; a ' ...
is a choice of a non-zero non-tangent vector at each point of the knot. More precisely, a ''framing'' is a choice of a non-zero section in the normal bundle of the knot, i.e. a (non-zero) normal vector field. Given a framed knot ''C'', the self-linking number is defined to be the
linking number
In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Eu ...
of ''C'' with a new curve obtained by pushing points of ''C'' along the framing vectors.
Given a
Seifert surface
In mathematics, a Seifert surface (named after German mathematician Herbert Seifert) is an orientable surface whose boundary is a given knot or link.
Such surfaces can be used to study the properties of the associated knot or link. For example ...
for a knot, the associated Seifert framing is obtained by taking a tangent vector to the surface pointing inwards and perpendicular to the knot. The self-linking number obtained from a Seifert framing is always zero.
The blackboard framing of a knot is the framing where each of the vectors points in the vertical (''z'') direction. The self-linking number obtained from the blackboard framing is called the Kauffman self-linking number of the knot. This is not a
knot invariant
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some i ...
because it is only well-defined up to
regular isotopy
The term regular can mean normal or in accordance with rules. It may refer to:
People
* Moses Regular (born 1971), America football player
Arts, entertainment, and media Music
* "Regular" (Badfinger song)
* Regular tunings of stringed instrumen ...
.
References
*.
*
Knot invariants
{{knottheory-stub