HOME

TheInfoList



OR:

A seismic shadow zone is an area of the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
's surface where
seismograph A seismometer is an instrument that responds to ground displacement and shaking such as caused by quakes, volcanic eruptions, and explosions. They are usually combined with a timing device and a recording device to form a seismograph. The out ...
s cannot detect direct P waves and/or
S waves __NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because t ...
from an
earthquake An earthquakealso called a quake, tremor, or tembloris the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they ...
. This is due to liquid layers or structures within the Earth's surface. The most recognized shadow zone is due to the core-mantle boundary where P waves are refracted and
S waves __NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because t ...
are stopped at the liquid outer core; however, any liquid boundary or body can create a shadow zone. For example,
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
reservoirs with a high enough percent melt can create seismic shadow zones.


Background

The earth is made up of different structures: the crust, the mantle, the
inner core Earth's inner core is the innermost internal structure of Earth, geologic layer of the planet Earth. It is primarily a solid ball (mathematics), ball with a radius of about , which is about 20% of Earth's radius or 70% of the Moon's radius. T ...
and the
outer core Earth's outer core is a fluid layer about thick, composed of mostly iron and nickel that lies above Earth's solid Earth's inner core, inner core and below its Earth's mantle, mantle. The outer core begins approximately beneath Earth's surface ...
. The crust, mantle, and inner core are typically solid; however, the outer core is entirely liquid. A liquid outer core was first shown in 1906 by
Geologist A geologist is a scientist who studies the structure, composition, and History of Earth, history of Earth. Geologists incorporate techniques from physics, chemistry, biology, mathematics, and geography to perform research in the Field research, ...
Richard Oldham. Oldham observed
seismogram A seismogram is a graph output by a seismograph. It is a record of the ground motion at a measuring station as a function of time. Seismograms typically record motions in three cartesian axes (x, y, and z), with the z axis perpendicular to the ...
s from various earthquakes and saw that some seismic stations did not record direct S waves, particularly ones that were 120° away from the hypocenter of the earthquake. In 1913,
Beno Gutenberg Beno Gutenberg (; June 4, 1889 – January 25, 1960) was a German-American seismologist who made several important contributions to the science. He was a colleague and mentor of Charles Francis Richter at the California Institute of Technolo ...
noticed the abrupt change in seismic velocities of the P waves and disappearance of S waves at the core-mantle boundary. Gutenberg attributed this due to a solid mantle and liquid outer core, calling it the
Gutenberg discontinuity The Gutenberg discontinuity occurs within Earth's interior at a depth of about below the surface, where there is an abrupt change in the seismic waves (generated by earthquakes or explosions) that travel through Earth. At this depth, primary sei ...
.


Seismic wave properties

The main observational constraint on identifying liquid layers and/or structures within the earth come from
seismology Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the generation and propagation of elastic ...
. When an earthquake occurs,
seismic waves A seismic wave is a mechanical wave of acoustic wave, acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake (or generally, a quake (natural phenomenon), quake), types of volcanic eruptions ...
radiate out spherically from the earthquake's
hypocenter A hypocenter or hypocentre (), also called ground zero or surface zero, is the point on the Earth's surface directly below a nuclear explosion, meteor air burst, or other mid-air explosion. In seismology, the hypocenter of an earthquake is its ...
. Two types of body waves travel through the Earth: primary seismic waves (P waves) and secondary seismic waves (S waves). P waves travel with motion in the same direction as the wave propagates and S waves travel with motion perpendicular to the wave propagation (transverse). The P waves are
refracted In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
by the liquid outer core of the Earth and are not detected between 104° and 140° (between approximately 11,570 and 15,570 km or 7,190 and 9,670 mi) from the hypocenter. This is due to
Snell's law Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing th ...
, where a seismic wave encounters a boundary and either
refract In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
s or reflects. In this case, the P waves refract due to
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
differences and greatly reduce in
velocity Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
. This is considered the P wave shadow zone. The
S waves __NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because t ...
cannot pass through the liquid outer core and are not detected more than 104° (approximately 11,570 km or 7,190 mi) from the
epicenter The epicenter (), epicentre, or epicentrum in seismology is the point on the Earth's surface directly above a hypocenter or focus, the point where an earthquake or an underground explosion originates. Determination The primary purpose of a ...
. This is considered the S wave shadow zone. However, P waves that travel refract through the outer core and refract to another P wave (PKP wave) on leaving the outer core can be detected within the shadow zone. Additionally, S waves that refract to P waves on entering the outer core and then refract to an S wave on leaving the outer core can also be detected in the shadow zone ( SKS waves). The reason for this is P wave and S wave velocities are governed by different properties in the material which they travel through and the different mathematical relationships they share in each case. The three properties are: incompressibility (k),
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
(p) and rigidity (u). P wave velocity is equal to: \sqrt S wave velocity is equal to: \sqrt S wave velocity is entirely dependent on the rigidity of the material it travels through. Liquids have zero rigidity, making the S wave velocity zero when traveling through a liquid. Overall, S waves are shear waves, and
shear stress Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross secti ...
is a type of deformation that cannot occur in a liquid. Conversely, P waves are compressional waves and are only partially dependent on rigidity. P waves still maintain some velocity (can be greatly reduced) when traveling through a liquid.


Other observations and implications

Although the core-mantle boundary casts the largest shadow zone, smaller structures, such as magma bodies, can also cast a shadow zone. For example, in 1981, Páll Einarsson conducted a seismic investigation on the Krafla Caldera in Northeast Iceland. In this study, Einarsson placed a dense array of seismometers over the caldera and recorded earthquakes that occurred. The resulting seismograms showed both an absence of S waves and/or small S wave amplitudes. Einarsson attributed these results to be caused by a magma reservoir. In this case, the magma reservoir has enough percent melt to cause S waves to be directly affected. In areas where there are no S waves being recorded, the S waves are encountering enough liquid, that no solid grains are touching. In areas where there are highly attenuated (small aptitude) S waves, there is still a percentage of melt, but enough solid grains are touching where S waves can travel through the part of the magma reservoir. Between 2014 and 2018, a geophysicist in Taiwan, Cheng-Horng Lin investigated the magma reservoir beneath the Tatun Volcanic Group in Taiwan. Lin's research group used deep earthquakes and seismometers on or near the Tatun Volcanic Group to identify changes P and S
waveforms In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time.David Crecraft, David Gorham, ''Electroni ...
. Their results showed P wave delays and the absence of S waves in various locations. Lin attributed this finding to be due to a magma reservoir with at least 40% melt that casts an S wave shadow zone. However, a recent study done by National Chung Cheng University used a dense array of seismometers and only saw S wave attenuation associated with the magma reservoir. This research study investigated the cause of the S wave shadow zone Lin observed and attributed it to either a magma diapir above the subducting
Philippine Sea plate The Philippine Sea plate or the Philippine plate is a tectonic plate comprising oceanic lithosphere that lies beneath the Philippine Sea, to the east of the Philippines. Most segments of the Philippines, including northern Luzon, are part of ...
. Though it was not a magma reservoir, there was still a structure with enough melt/liquid to cause an S wave shadow zone. The existence of shadow zones, more specifically S wave shadow zones, could have implications on the eruptibility of volcanoes throughout the world. When volcanoes have enough percent melt to go below the rheological lockup (percent crystal fraction when a volcano is eruptive or not eruptive), this makes the volcanoes eruptible. Determining the percent melt of a volcano could help with predictive modeling and assess current and future hazards. In an actively erupting volcano, Mt. Etna in Italy, a study was done in 2021 that showed both an absence of S waves in some regions and highly attenuated S waves in others, depending on where the receivers are located above the magma chamber. Previously, in 2014, a study was done to model the mechanism leading to December 28, 2014, eruption. This study showed that an eruption could be triggered between 30 and 70% melt.


See also

*
Seismic wave A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake (or generally, a quake), volcanic eruption, magma movement, a large landslide and a large ma ...
*
Ray tracing (physics) In physics, ray tracing is a method for calculating the path of waves or Subatomic particle, particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, ...
*
P wave A P wave (primary wave or pressure wave) is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any ...
*
S wave __NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because t ...
*
Snell's Law Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing th ...
*
Structure of Earth The internal structure of Earth are the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere, and solid mantle, a liquid outer core whose flow ge ...
* Core-mantle boundary


References

{{DEFAULTSORT:Shadow Zone Seismology