HOME

TheInfoList



OR:

Given the problem of the
aerodynamic Aerodynamics () is the study of the motion of atmosphere of Earth, air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an ...
design A design is the concept or proposal for an object, process, or system. The word ''design'' refers to something that is or has been intentionally created by a thinking agent, and is sometimes used to refer to the inherent nature of something ...
of the
nose cone A nose cone is the conically shaped forwardmost section of a rocket, guided missile or aircraft, designed to modulate oncoming fluid dynamics, airflow behaviors and minimize aerodynamic drag. Nose cones are also designed for submerged wat ...
section of any vehicle or body meant to travel through a compressible fluid medium (such as a
rocket A rocket (from , and so named for its shape) is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely ...
or
aircraft An aircraft ( aircraft) is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or the Lift (force), dynamic lift of an airfoil, or, i ...
,
missile A missile is an airborne ranged weapon capable of self-propelled flight aided usually by a propellant, jet engine or rocket motor. Historically, 'missile' referred to any projectile that is thrown, shot or propelled towards a target; this ...
,
shell Shell may refer to: Architecture and design * Shell (structure), a thin structure ** Concrete shell, a thin shell of concrete, usually with no interior columns or exterior buttresses Science Biology * Seashell, a hard outer layer of a marine ani ...
or
bullet A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. They are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax; and are made in various shapes and constru ...
), an important problem is the determination of the
nose cone A nose cone is the conically shaped forwardmost section of a rocket, guided missile or aircraft, designed to modulate oncoming fluid dynamics, airflow behaviors and minimize aerodynamic drag. Nose cones are also designed for submerged wat ...
geometrical shape for optimum performance. For many applications, such a task requires the definition of a
solid of revolution In geometry, a solid of revolution is a Solid geometry, solid figure obtained by rotating a plane figure around some straight line (the ''axis of revolution''), which may not Intersection (geometry), intersect the generatrix (except at its bound ...
shape that experiences minimal resistance to rapid motion through such a fluid medium.


Nose cone shapes and equations

Source:


General dimensions

Source: In all of the following nose cone shape equations, is the overall length of the nose cone and is the radius of the base of the nose cone. is the radius at any point , as varies from , at the tip of the nose cone, to . The equations define the two-dimensional profile of the nose shape. The full body of revolution of the nose cone is formed by rotating the profile around the centerline . While the equations describe the "perfect" shape, practical nose cones are often blunted or truncated for manufacturing, aerodynamic, or thermodynamic reasons.


Conic

A very common nose-cone shape is a simple
cone In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines ...
. This shape is often chosen for its ease of manufacture. More optimal, streamlined shapes (described below) are often much more difficult to create. The sides of a conic profile are straight lines, so the diameter equation is simply: : y = Cones are sometimes defined by their half angle, : : \phi = \arctan \left(\right) and y = x \tan(\phi)\;


Spherically blunted conic

In practical applications such as
re-entry vehicle Atmospheric entry (sometimes listed as Vimpact or Ventry) is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. Atmospheric entry may be ''uncontrolled entry ...
s, a conical nose is often blunted by capping it with a segment of a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
. The tangency point where the sphere meets the cone can be found, using similar triangles, from: : x_t = \frac \sqrt : y_t = \frac where is the radius of the spherical nose cap. The center of the spherical nose cap, , can be found from: : x_o = x_t + \sqrt And the apex point, can be found from: : x_a = x_o - r_n


Bi-conic

A bi-conic nose cone shape is simply a cone with length stacked on top of a frustum of a cone (commonly known as a ''conical transition section'' shape) with length , where the base of the upper cone is equal in radius to the top radius of the smaller frustum with base radius . :L=L_1+L_2 :For 0 \le x \le L_1 : y = :For L_1 \le x \le L : y = R_1 + Half angles: :\phi_1 = \arctan \left(\right) and y = x \tan(\phi_1)\; :\phi_2 = \arctan \left(\right) and y = R_1 + (x - L_1) \tan(\phi_2)\;


Tangent ogive

Next to a simple cone, the tangent ogive shape is the most familiar in hobby rocketry. The profile of this shape is formed by a segment of a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
such that the rocket body is
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
to the curve of the nose cone at its base, and the base is on the radius of the circle. The popularity of this shape is largely due to the ease of constructing its profile, as it is simply a circular section. The radius of the circle that forms the ogive is called the ''ogive radius'', , and it is related to the length and base radius of the nose cone as expressed by the formula: :\rho = The radius at any point , as varies from to is: :y = \sqrt+R - \rho The nose cone length, , must be less than or equal to . If they are equal, then the shape is a
hemisphere Hemisphere may refer to: In geometry * Hemisphere (geometry), a half of a sphere As half of Earth or any spherical astronomical object * A hemisphere of Earth ** Northern Hemisphere ** Southern Hemisphere ** Eastern Hemisphere ** Western Hemi ...
.


Spherically blunted tangent ogive

A tangent ogive nose is often blunted by capping it with a segment of a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
. The tangency point where the sphere meets the tangent ogive can be found from: :\begin x_o &= L - \sqrt \\ y_t &= \frac \\ x_t &= x_o - \sqrt \end where is the radius and is the center of the spherical nose cap.


Secant ogive

The profile of this shape is also formed by a segment of a circle, but the base of the shape is not on the radius of the circle defined by the ogive radius. The rocket body will ''not'' be tangent to the curve of the nose at its base. The ogive radius is not determined by and (as it is for a tangent ogive), but rather is one of the factors to be chosen to define the nose shape. If the chosen ogive radius of a secant ogive is greater than the ogive radius of a tangent ogive with the same and , then the resulting secant ogive appears as a tangent ogive with a portion of the base truncated. :\rho > and \alpha = \arccos \left(\right)-\arctan \left(\right) Then the radius at any point as varies from to is: :y = \sqrt - \rho\sin(\alpha) If the chosen is less than the tangent ogive and greater than half the length of the nose cone, then the result will be a secant ogive that bulges out to a maximum diameter that is greater than the base diameter. A classic example of this shape is the nose cone of the Honest John. :\frac < \rho <


Elliptical

The profile of this shape is one-half of an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
, with the major axis being the centerline and the minor axis being the base of the nose cone. A rotation of a full ellipse about its major axis is called a prolate spheroid, so an elliptical nose shape would properly be known as a prolate hemispheroid. This shape is popular in subsonic flight (such as
model rocketry A model rocket is a small rocket designed to reach low altitudes (e.g., for a model) and #Model rocket recovery methods, be recovered by a variety of means. According to the United States National Association of Rocketry, National Associati ...
) due to the blunt nose and tangent base. This is not a shape normally found in professional rocketry, which almost always flies at much higher velocities where other designs are more suitable. If equals , this is a
hemisphere Hemisphere may refer to: In geometry * Hemisphere (geometry), a half of a sphere As half of Earth or any spherical astronomical object * A hemisphere of Earth ** Northern Hemisphere ** Southern Hemisphere ** Eastern Hemisphere ** Western Hemi ...
. :y = R \sqrt


Parabolic

This nose shape is not the blunt shape that is envisioned when people commonly refer to a "parabolic" nose cone. The parabolic series nose shape is generated by rotating a segment of a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactl ...
around a line parallel to its latus rectum. This construction is similar to that of the tangent ogive, except that a parabola is the defining shape rather than a circle. Just as it does on an ogive, this construction produces a nose shape with a sharp tip. For the blunt shape typically associated with a parabolic nose, see
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
below. (The parabolic shape is also often confused with the elliptical shape.) For 0 \le K' \le 1 : y = R\left(\right) can vary anywhere between and , but the most common values used for nose cone shapes are: For the case of the full parabola () the shape is
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
to the body at its base, and the base is on the axis of the parabola. Values of less than result in a slimmer shape, whose appearance is similar to that of the secant ogive. The shape is no longer tangent at the base, and the base is parallel to, but offset from, the axis of the parabola.


Power series

The ''power series'' includes the shape commonly referred to as a "parabolic" nose cone, but the shape correctly known as a ''parabolic nose cone'' is a member of the parabolic series (described above). The power series shape is characterized by its (usually) blunt tip, and by the fact that its base is not tangent to the body tube. There is always a discontinuity at the joint between nose cone and body that looks distinctly non-aerodynamic. The shape can be modified at the base to smooth out this discontinuity. Both a flat-faced cylinder and a
cone In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines ...
are members of the power series. The power series nose shape is generated by rotating the curve about the -axis for values of less than . The factor controls the bluntness of the shape. For values of above about , the tip is fairly sharp. As decreases towards zero, the power series nose shape becomes increasingly blunt. :For 0 \le n \le 1: y = R\left(\right)^n Common values of include:


Haack series

Unlike all of the nose cone shapes above, Wolfgang Haack's series shapes are not constructed from geometric figures. The shapes are instead mathematically derived for the purpose of minimizing drag; a related shape with similar derivation being the Sears–Haack body. While the series is a continuous set of shapes determined by the value of in the equations below, two values of have particular significance: when , the notation signifies minimum drag for the given length and diameter, and when , indicates minimum drag for a given length and volume. The Haack series nose cones are not perfectly tangent to the body at their base except for the case where . However, the discontinuity is usually so slight as to be imperceptible. For , Haack nose cones bulge to a maximum diameter greater than the base diameter. Haack nose tips do not come to a sharp point, but are slightly rounded. :\begin x (\theta) &= \left( 1 - \cos(\theta) \right) \\ y (\theta,C) &= \sqrt \end For 0 \leq \theta \leq \pi. Special values of (as described above) include:


Von Kármán

The Haack series designs giving minimum drag for the given length and diameter, the LD-Haack where , is commonly called the ''Von Kármán'' or ''Von Kármán ogive''.


Aerospike

An aerospike can be used to reduce the forebody pressure acting on supersonic aircraft. The aerospike creates a detached shock ahead of the body, thus reducing the drag acting on the aircraft.


Nose cone drag characteristics

For aircraft and rockets, below
Mach The Mach number (M or Ma), often only Mach, (; ) is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a Boundary (thermodynamic), boundary to the local speed of sound. It is named after the Austrian physi ...
.8, the nose pressure drag is essentially zero for all shapes. The major significant factor is friction drag, which is largely dependent upon the wetted area, the surface smoothness of that area, and the presence of any discontinuities in the shape. For example, in strictly subsonic rockets a short, blunt, smooth elliptical shape is usually best. In the
transonic Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and Supersonic speed, supersonic airflow around that object. The exact range of speeds depends on the object's critical Mach numb ...
region and beyond, where the pressure drag increases dramatically, the effect of nose shape on drag becomes highly significant. The factors influencing the pressure drag are the general shape of the nose cone, its fineness ratio, and its bluffness ratio.


Influence of the general shape

Many references on nose cone design contain empirical data comparing the drag characteristics of various nose shapes in different flight regimes. The chart shown here seems to be the most comprehensive and useful compilation of data for the flight regime of greatest interest. This chart generally agrees with more detailed, but less comprehensive data found in other references (most notably the USAF Datcom). In many nose cone designs, the greatest concern is flight performance in the transonic region from Mach0.8 to Mach1.2. Although data are not available for many shapes in the transonic region, the table clearly suggests that either the Von Kármán shape, or power series shape with , would be preferable to the popular conical or ogive shapes, for this purpose. This observation goes against the often-repeated conventional wisdom that a conical nose is optimum for "Mach-breaking". Fighter aircraft are probably good examples of nose shapes optimized for the transonic region, although their nose shapes are often distorted by other considerations of avionics and inlets. For example, an
F-16 Fighting Falcon The General Dynamics F-16 Fighting Falcon is an American single-engine supersonic Multirole combat aircraft, multirole fighter aircraft originally developed by General Dynamics for the United States Air Force (USAF). Designed as an air superio ...
nose appears to be a very close match to a Von Kármán shape.


Influence of the fineness ratio

The ratio of the length of a nose cone compared to its base diameter is known as the '' fineness ratio''. This is sometimes also called the ''aspect ratio'', though that term is usually applied to wings and tails. Fineness ratio is often applied to the entire vehicle, considering the overall length and diameter. The length/diameter relation is also often called the ''caliber'' of a nose cone. At supersonic speeds, the fineness ratio has a significant effect on nose cone
wave drag In aeronautics, wave drag is a component of the aerodynamic drag In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the direction of motion of any object moving with respect to a surrounding flu ...
, particularly at low ratios; but there is very little additional gain for ratios increasing beyond 5:1. As the fineness ratio increases, the wetted area, and thus the skin friction component of drag, will also increase. Therefore, the minimum drag fineness ratio will ultimately be a trade-off between the decreasing wave drag and increasing friction drag.


See also

*
Index of aviation articles Aviation is the design, development, production, operation, and use of aircraft, especially heavier-than-air aircraft. Articles related to aviation include: A Aviation accidents and incidents – Above Mean Sea Level (AMSL) – ADF – Acces ...
* Bullet-nose curve * Nose bullet


Further reading

* *


References

{{reflist, refs= {{cite report , url=http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF , title=The Descriptive Geometry of Nose Cones , first=Gary A. , last=Crowell Sr. , date=1996 , access-date=11 April 2011 , archive-url=https://web.archive.org/web/20110411143013/http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF , archive-date=11 April 2011 {{cite book , url=https://babel.hathitrust.org/cgi/pt?id=mdp.39015015426904&view=1up&seq=7 , title=Missile Configuration Design , publisher=McGraw-Hill , location=New York City , first=S. S. , last=Chin , date=1961 , oclc=253099252 , lccn=60-15518 {{cite journal , url=https://www.irjet.net/archives/V7/i8/IRJET-V7I8605.pdf , title=A Review on Nose Cone Designs for Different Flight Regimes , journal=International Research Journal of Engineering and Technology , first1=Aditya Rajan , last1=Iyer , first2=Anjali , last2=Pant , volume=7 , issue=8 , pages=3546–3554 , date=August 2020 , s2cid=221684654 {{cite journal , url=https://www.researchgate.net/publication/382849116 , title=Improvement of Fire Power of Weapon System by Optimizing Nose Cone Shape and War Head Grouping , journal=ResearchGate , last1=satyajit panigrahy , date=August 2020 , doi= 10.13140/RG.2.2.28694.36161 Aerodynamics Rocketry