In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation (e.g. a particle beam, sound wave, light, or an X-ray) intersects a localized phenomenon (e.g. a particle or density fluctuation). For example, the
Rutherford cross-section is a measure of probability that an
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pro ...
will be deflected by a given angle during an interaction with an
atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden experiments, Geiger–Marsden gold foil experiment. After th ...
. Cross section is typically denoted (
sigma
Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used ...
) and is expressed in units of area, more specifically in
barn
A barn is an agricultural building usually on farms and used for various purposes. In North America, a barn refers to structures that house livestock, including cattle and horses, as well as equipment and fodder, and often grain.Allen ...
s. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a
stochastic process.
In
classical physics, this probability often converges to a deterministic proportion of excitation energy involved in the process, so that, for example, with light scattering off of a particle, the cross section specifies the amount of optical power scattered from light of a given irradiance (power per area). It is important to note that although the cross section has the same units as area, the cross section may not necessarily correspond to the actual physical size of the target given by other forms of measurement. It is not uncommon for the actual cross-sectional area of a scattering object to be much larger or smaller than the cross section relative to some physical process. For example,
plasmonic nanoparticles can have light scattering cross sections for particular frequencies that are much larger than their actual cross-sectional areas.
When two discrete particles interact in classical physics, their mutual cross section is the area
transverse
Transverse may refer to:
*Transverse engine, an engine in which the crankshaft is oriented side-to-side relative to the wheels of the vehicle
*Transverse flute, a flute that is held horizontally
* Transverse force (or ''Euler force''), the tangen ...
to their relative motion within which they must meet in order to
scatter from each other. If the particles are hard
inelastic sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s that interact only upon contact, their scattering cross section is related to their geometric size. If the particles interact through some action-at-a-distance force, such as
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
or
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
, their scattering cross section is generally larger than their geometric size.
When a cross section is specified as the
differential limit of a function of some final-state variable, such as particle angle or energy, it is called a differential cross section (see detailed discussion below). When a cross section is integrated over all scattering angles (and possibly other variables), it is called a total cross section or integrated total cross section. For example, in
Rayleigh scattering
Rayleigh scattering ( ), named after the 19th-century British physicist Lord Rayleigh (John William Strutt), is the predominantly elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the ...
, the intensity scattered at the forward and backward angles is greater than the intensity scattered sideways, so the forward differential scattering cross section is greater than the perpendicular differential cross section, and by adding all of the infinitesimal cross sections over the whole range of angles with integral calculus, we can find the total cross section.
Scattering cross sections may be defined in
nuclear
Nuclear may refer to:
Physics
Relating to the nucleus of the atom:
*Nuclear engineering
*Nuclear physics
*Nuclear power
*Nuclear reactor
*Nuclear weapon
*Nuclear medicine
*Radiation therapy
*Nuclear warfare
Mathematics
*Nuclear space
* Nuclear ...
,
atomic, and
particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and ...
for collisions of accelerated beams of one type of particle with targets (either stationary or moving) of a second type of particle. The probability for any given reaction to occur is in proportion to its cross section. Thus, specifying the cross section for a given reaction is a proxy for stating the probability that a given scattering process will occur.
The measured
reaction rate
The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per uni ...
of a given process depends strongly on experimental variables such as the density of the target material, the intensity of the beam, the detection efficiency of the apparatus, or the angle setting of the detection apparatus. However, these quantities can be factored away, allowing measurement of the underlying two-particle collisional cross section.
Differential and total scattering cross sections are among the most important measurable quantities in
nuclear
Nuclear may refer to:
Physics
Relating to the nucleus of the atom:
*Nuclear engineering
*Nuclear physics
*Nuclear power
*Nuclear reactor
*Nuclear weapon
*Nuclear medicine
*Radiation therapy
*Nuclear warfare
Mathematics
*Nuclear space
* Nuclear ...
,
atomic, and
particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and ...
.
Collision among gas particles

In a
gas of finite-sized particles there are collisions among particles that depend on their cross-sectional size. The average distance that a particle travels between collisions depends on the density of gas particles. These quantities are related by
:
where
: is the cross section of a two-particle collision (
SI units: m
2),
: is the
mean free path
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
between collisions (SI units: m),
: is the
number density
The number density (symbol: ''n'' or ''ρ''N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number ...
of the target particles (SI units: m
−3).
If the particles in the gas can be treated as hard spheres of radius that interact by direct contact, as illustrated in Figure 1, then the effective cross section for the collision of a pair is
:
If the particles in the gas interact by a force with a larger range than their physical size, then the cross section is a larger effective area that may depend on a variety of variables such as the energy of the particles.
Cross sections can be computed for atomic collisions but also are used in the subatomic realm. For example, in
nuclear physics
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.
Nuclear physics should not be confused with atomic physics, which studies the ...
a "gas" of low-energy
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s collides with nuclei in a reactor or other nuclear device, with a
cross section that is energy-dependent and hence also with well-defined
mean free path
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
between collisions.
Attenuation of a beam of particles
If a beam of particles enters a thin layer of material of thickness , the
flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
of the beam will decrease by according to
:
where is the total cross section of ''all'' events, including
scattering
Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
,
absorption, or transformation to another species. The volumetric number density of scattering centers is designated by . Solving this equation exhibits the exponential attenuation of the beam intensity:
:
where is the initial flux, and is the total thickness of the material. For light, this is called the
Beer–Lambert law
The Beer–Lambert law, also known as Beer's law, the Lambert–Beer law, or the Beer–Lambert–Bouguer law relates the attenuation of light to the properties of the material through which the light is travelling. The law is commonly applied t ...
.
Differential cross section
Consider a
classical measurement where a single particle is scattered off a single stationary target particle. Conventionally, a
spherical coordinate system
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' me ...
is used, with the target placed at the origin and the axis of this coordinate system aligned with the incident beam. The angle is the scattering angle, measured between the incident beam and the scattered beam, and the is the
azimuthal angle
An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north.
Mathematically ...
.
:

The
impact parameter
In physics, the impact parameter is defined as the perpendicular distance between the path of a projectile and the center of a potential field created by an object that the projectile is approaching (see diagram). It is often referred to in ...
is the perpendicular offset of the trajectory of the incoming particle, and the outgoing particle emerges at an angle . For a given interaction (
Coulombic,
magnetic
Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
,
gravitational, contact, etc.), the impact parameter and the scattering angle have a definite one-to-one functional dependence on each other. Generally the impact parameter can neither be controlled nor measured from event to event and is assumed to take all possible values when averaging over many scattering events. The differential size of the cross section is the area element in the plane of the impact parameter, i.e. . The differential angular range of the scattered particle at angle is the solid angle element . The differential cross section is the quotient of these quantities, .
It is a function of the scattering angle (and therefore also the impact parameter), plus other observables such as the momentum of the incoming particle. The differential cross section is always taken to be positive, even though larger impact parameters generally produce less deflection. In cylindrically symmetric situations (about the beam axis), the
azimuthal angle
An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north.
Mathematically ...
is not changed by the scattering process, and the differential cross section can be written as
:
.
In situations where the scattering process is not azimuthally symmetric, such as when the beam or target particles possess magnetic moments oriented perpendicular to the beam axis, the differential cross section must also be expressed as a function of the azimuthal angle.
For scattering of particles of incident flux off a stationary target consisting of many particles, the differential cross section at an angle is related to the flux of scattered particle detection in particles per unit time by
:
Here is the finite angular size of the detector (SI unit:
sr), is the
number density
The number density (symbol: ''n'' or ''ρ''N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number ...
of the target particles (SI units: m
−3), and is the thickness of the stationary target (SI units: m). This formula assumes that the target is thin enough that each beam particle will interact with at most one target particle.
The total cross section may be recovered by integrating the differential cross section over the full
solid angle
In geometry, a solid angle (symbol: ) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point.
The po ...
( steradians):
:
It is common to omit the “differential”
qualifier when the type of cross section can be inferred from context. In this case, may be referred to as the ''integral cross section'' or ''total cross section''. The latter term may be confusing in contexts where multiple events are involved, since “total” can also refer to the sum of cross sections over all events.
The differential cross section is extremely useful quantity in many fields of physics, as measuring it can reveal a great amount of information about the internal structure of the target particles. For example, the differential cross section of
Rutherford scattering
In particle physics, Rutherford scattering is the elastic scattering of charged particles by the Coulomb interaction. It is a physical phenomenon explained by Ernest Rutherford in 1911 that led to the development of the planetary Rutherford model ...
provided strong evidence for the existence of the atomic nucleus.
Instead of the solid angle, the
momentum transfer may be used as the independent variable of differential cross sections.
Differential cross sections in inelastic scattering contain
resonance peaks that indicate the creation of metastable states and contain information about their energy and lifetime.
Quantum scattering
In the
time-independent formalism of
quantum scattering, the initial
wave function
A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements m ...
(before scattering) is taken to be a plane wave with definite
momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
:
:
where and are the ''relative'' coordinates between the projectile and the target. The arrow indicates that this only describes the ''asymptotic behavior'' of the wave function when the projectile and target are too far apart for the interaction to have any effect.
After scattering takes place it is expected that the wave function takes on the following asymptotic form:
:
where is some function of the angular coordinates known as the
scattering amplitude. This general form is valid for any short-ranged, energy-conserving interaction. It is not true for long-ranged interactions, so there are additional complications when dealing with electromagnetic interactions.
The full wave function of the system behaves asymptotically as the sum
:
The differential cross section is related to the scattering amplitude:
:
This has the simple interpretation as the probability density for finding the scattered projectile at a given angle.
A cross section is therefore a measure of the effective surface area seen by the impinging particles, and as such is expressed in units of area. The cross section of two
particles (i.e. observed when the two particles are
colliding
In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great fo ...
with each other) is a measure of the interaction event between the two particles. The cross section is proportional to the probability that an interaction will occur; for example in a simple scattering experiment the number of particles scattered per unit of time (current of scattered particles ) depends only on the number of incident particles per unit of time (current of incident particles ), the characteristics of target (for example the number of particles per unit of surface ), and the type of interaction. For we have
:
Relation to the S-matrix
If the
reduced mass
In physics, the reduced mass is the "effective" inertial mass appearing in the two-body problem of Newtonian mechanics. It is a quantity which allows the two-body problem to be solved as if it were a one-body problem. Note, however, that the mass ...
es and
momenta
Momenta is an autonomous driving company headquartered in Beijing, China that aims to build the 'Brains' for autonomous vehicles.
In December 2021, Momenta and BYD established a 100 million yuan ($15.7 million) joint venture to deploy autonomous ...
of the colliding system are , and , before and after the collision respectively, the differential cross section is given by
:
where the on-shell matrix is defined by
:
in terms of the
S-matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
More forma ...
. Here is the
Dirac delta function
In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire ...
. The computation of the S-matrix is the main goal of the
scattering theory
In mathematics and physics, scattering theory is a framework for studying and understanding the scattering of waves and particles. Wave scattering corresponds to the collision and scattering of a wave with some material object, for instance su ...
.
Units
Although the
SI unit
The International System of Units, known by the international abbreviation SI in all languages and sometimes Pleonasm#Acronyms and initialisms, pleonastically as the SI system, is the modern form of the metric system and the world's most wid ...
of total cross sections is
m2, smaller units are usually used in practice.
In nuclear and particle physics, the conventional unit is the barn
b, where 1 b = 10
−28 m
2 = 100
fm2. Smaller
prefixed units such as
mb and
μb are also widely used. Correspondingly, the differential cross section can be measured in units such as mb/sr.
When the scattered radiation is visible light, it is conventional to measure the path length in
centimetre
330px, Different lengths as in respect to the Electromagnetic spectrum, measured by the Metre and its deriveds scales. The Microwave are in-between 1 meter to 1 millimeter.
A centimetre (international spelling) or centimeter (American spellin ...
s. To avoid the need for conversion factors, the scattering cross section is expressed in cm
2, and the number concentration in cm
−3. The measurement of the scattering of visible light is known as
nephelometry, and is effective for particles of 2–50
µm
The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
in diameter: as such, it is widely used in
meteorology
Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
and in the measurement of
atmospheric pollution
Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. There are many different typ ...
.
The scattering of
X-ray
X-rays (or rarely, ''X-radiation'') are a form of high-energy electromagnetic radiation. In many languages, it is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it in 1895 and named it ' ...
s can also be described in terms of scattering cross sections, in which case the square
ångström
The angstromEntry "angstrom" in the Oxford online dictionary. Retrieved on 2019-03-02 from https://en.oxforddictionaries.com/definition/angstrom.Entry "angstrom" in the Merriam-Webster online dictionary. Retrieved on 2019-03-02 from https://www.m ...
is a convenient unit: 1 Å
2 = 10
−20 m
2 = = 10
8 b. The sum of the scattering, photoelectric, and pair-production cross-sections (in barns) is charted as the "atomic attenuation coefficient" (narrow-beam), in barns.
Scattering of light
For light, as in other settings, the scattering cross section for particles is generally different from the
geometrical cross section of the particle, and it depends upon the
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
of light and the
permittivity
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more i ...
, shape, and size of the particle. The total amount of scattering in a sparse medium is proportional to the product of the scattering cross section and the number of particles present.
In the interaction of light with particles, many processes occur, each with their own cross sections, including
absorption,
scattering
Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
, and
photoluminescence
Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. pho ...
. The sum of the absorption and scattering cross sections is sometimes referred to as the attenuation or extinction cross section.
:
The total extinction cross section is related to the attenuation of the light intensity through the
Beer–Lambert law
The Beer–Lambert law, also known as Beer's law, the Lambert–Beer law, or the Beer–Lambert–Bouguer law relates the attenuation of light to the properties of the material through which the light is travelling. The law is commonly applied t ...
, which says that attenuation is proportional to particle concentration:
:
where is the attenuation at a given
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
, is the particle concentration as a number density, and is the
path length. The absorbance of the radiation is the
logarithm
In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number to the base is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of ...
(
decadic or, more usually,
natural
Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
) of the reciprocal of the
transmittance
Transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is th ...
:
:
Combining the scattering and absorption cross sections in this manner is often necessitated by the inability to distinguish them experimentally, and much research effort has been put into developing models that allow them to be distinguished, the Kubelka-Munk theory being one of the most important in this area.
Cross section and Mie theory
Cross sections commonly calculated using
Mie theory
The Mie solution to Maxwell's equations (also known as the Lorenz–Mie solution, the Lorenz–Mie–Debye solution or Mie scattering) describes the scattering of an electromagnetic plane wave by a homogeneous sphere. The solution takes the f ...
include efficiency coefficients for extinction
, scattering
, and Absorption
cross sections. Those are normalized by the geometrical cross sections of the particle
as
The cross section is defined by
:
where