Satellite DNA consists of very large arrays of
tandemly repeating,
non-coding DNA
Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules (e.g. transfer RNA, microRNA, piRNA, ribosomal RNA, and regul ...
. Satellite DNA is the main component of functional
centromere
The centromere links a pair of sister chromatids together during cell division. This constricted region of chromosome connects the sister chromatids, creating a short arm (p) and a long arm (q) on the chromatids. During mitosis, spindle fibers ...
s, and form the main structural constituent of
heterochromatin
Heterochromatin is a tightly packed form of DNA or '' condensed DNA'', which comes in multiple varieties. These varieties lie on a continue between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a rol ...
.
The name "satellite DNA" refers to the phenomenon that repetitions of a short
DNA sequence tend to produce a different frequency of the bases
adenine,
cytosine
Cytosine () (symbol C or Cyt) is one of the four nucleobases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached ...
,
guanine
Guanine () (symbol G or Gua) is one of the four main nucleobases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine ( uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside is c ...
, and
thymine
Thymine () (symbol T or Thy) is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine n ...
, and thus have a different density from bulk DNA such that they form a second or "satellite" band(s) when genomic DNA is separated along a cesium chloride
density gradient using
buoyant density centrifugation.
Sequences with a greater ratio of A+T display a lower density while those with a greater ratio of G+C display a higher density than the bulk of genomic DNA. Some repetitive sequences are ~50% G+C/A+T and thus have buoyant densities the same as bulk genomic DNA. These satellites are called "cryptic" satellites because they form a band hidden within the main band of genomic DNA. "Isopycnic" is another term used for cryptic satellites.
Satellite DNA families in humans
Satellite DNA, together with
minisatellite and
microsatellite
A microsatellite is a tract of repetitive DNA in which certain DNA motifs (ranging in length from one to six or more base pairs) are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organism's genome. ...
DNA, constitute the
tandem repeat
Tandem repeats occur in DNA when a pattern of one or more nucleotides is repeated and the repetitions are directly adjacent to each other. Several protein domains also form tandem repeats within their amino acid primary structure, such as armadi ...
s.
The major satellite DNA families in humans are called:
Length
A repeated
pattern
A pattern is a regularity in the world, in human-made design, or in abstract ideas. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeated li ...
can be between 1 base pair long (a mononucleotide repeat) to several thousand base pairs long,
and the total size of a satellite DNA block can be several megabases without interruption. Long repeat units have been described containing domains of shorter repeated segments and mononucleotides (1-5 bp), arranged in clusters of microsatellites, wherein differences among individual copies of the longer repeat units were clustered.
Most satellite DNA is localized to the telomeric or the centromeric region of the chromosome. The nucleotide sequence of the repeats is fairly well conserved across species. However, variation in the length of the repeat is common. For example,
minisatellite DNA is a short region (1-5kb) of repeating elements with length >9 nucleotides. Whereas
microsatellite
A microsatellite is a tract of repetitive DNA in which certain DNA motifs (ranging in length from one to six or more base pairs) are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organism's genome. ...
s in DNA sequences are considered to have a length of 1-8 nucleotides . The difference in how many of the repeats is present in the region (length of the region) is the basis for
DNA profiling
DNA profiling (also called DNA fingerprinting) is the process of determining an individual's DNA characteristics. DNA analysis intended to identify a species, rather than an individual, is called DNA barcoding.
DNA profiling is a forensic t ...
.
Origin
Microsatellites are thought to have originated by polymerase slippage during DNA replication. This comes from the observation that microsatellite alleles usually are length polymorphic; specifically, the length differences observed between microsatellite alleles are generally multiples of the repeat unit length.
Structure
Satellite DNA adopts higher-order three-dimensional structures in a naturally occurring complex satellite DNA from the land crab ''
Gecarcinus lateralis
''Gecarcinus lateralis'', also known by the common names blackback land crab, Bermuda land crab, red land crab (leading to easy confusion with ''Gecarcoidea natalis'') and moon crab (leading to easy confusion with '' G. quadratus'' and '' Cardiso ...
'', whose genome contains 3% of a GC-rich satellite band consisting of a ~2100 base pair (bp) "repeat unit" sequence motif called RU.
The RU was arranged in long tandem arrays with approximately 16,000 copies per genome. Several RU sequences were cloned and sequenced to reveal conserved regions of conventional DNA sequences over stretches greater than 550 bp, interspersed with five "divergent domains" within each copy of RU.
Four divergent domains consisted of microsatellite repeats, biased in base composition, with purines on one strand and pyrimidines on the other. Some contained mononucleotide repeats of C:G base pairs approximately 20 bp in length. These strand-biased domains ranged in length from approximately 20 bp to greater than 250 bp. The most prevalent repeated sequences in the embedded microsatellite regions were CT:AG, CCT:AGG, CCCT:AGGG, and CGCAC:GTGCG
These repeating sequences were shown to adopt altered structures including
triple-stranded DNA,
Z-DNA
Z-DNA is one of the many possible double helical structures of DNA. It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form. Z-DNA is thought ...
,
stem-loop
Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence wh ...
, and other conformations under
superhelical stress.
Between the strand-biased microsatellite repeats and C:G mononucleotide repeats, all sequence variations retained one or two base pairs with A (purine) interrupting the pyrimidine-rich strand and T (pyrimidine) interrupting the purine-rich strand. These interruptions in compositional bias adopted highly distorted conformations as shown by their response to nuclease enzymes, presumably due to steric effects of the larger (bicyclic) purines protruding into the complementary strand of smaller (monocyclic) pyridine rings. The sequence TTAA:TTAA was found in the longest such domain of RU and it produced the strongest signal in response to nucleases in experimental observations. That particular strand-biased divergent domain was
subcloned
In molecular biology, subcloning is a technique used to move a particular DNA sequence from a ''parent vector'' to a ''destination vector''.
Subcloning is not to be confused with molecular cloning, a related technique.
Procedure
Restriction e ...
and its altered helical structure was studied in greater detail.
A fifth divergent domain in the RU sequence was characterized by variations of a symmetrical DNA sequence motif of alternating purines and pyrimidines shown to adopt a left-handed
Z-DNA
Z-DNA is one of the many possible double helical structures of DNA. It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form. Z-DNA is thought ...
or
stem-loop
Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence wh ...
structure under superhelical stress. The conserved symmetrical Z-DNA was abbreviated Z
4Z
5NZ
15NZ
5Z
4, where Z represents alternating purine/pyrimidine sequences. A
stem-loop
Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence wh ...
structure was centered in the Z
15 element at the highly conserved
palindromic sequence CGCACGTGCG:CGCACGTGCG and was flanked by extended palindromic Z-DNA sequences over a 35 bp region. Many RU variants showed deletions of at least 10 bp outside the Z
4Z
5NZ
15NZ
5Z
4 structural element, while others had additional Z-DNA sequences lengthening the alternating purine and pyrimidine domain to over 50 bp.
One extended RU sequence (EXT) was shown to have six tandem copies of a 142 bp amplified (AMPL) sequence motif inserted into a region bordered by inverted repeats where most copies contained just one AMPL sequence element. There were no nuclease-sensitive altered structures or significant sequence divergence in the relatively conventional AMPL sequence. A truncated RU sequence (TRU), 327 bp shorter than most clones, arose from a single base change leading to a second EcoRI restriction site in TRU.
Another crab, the hermit crab ''
Pagurus pollicaris'', was shown to have a family of AT-rich satellites with
inverted repeat structures that comprised 30% of the entire genome. Another cryptic satellite from the same crab with the sequence CCTA:TAGG
kinner D.M.
Beattie W.G.
Blattner F.F.
Stark B.P.
Dahlberg J.E.
Biochemistry. 1974; 13: 3930-3937
was found inserted into some of the palindromes.
See also
*
Buoyant density centrifugation
*
DNA profiling
DNA profiling (also called DNA fingerprinting) is the process of determining an individual's DNA characteristics. DNA analysis intended to identify a species, rather than an individual, is called DNA barcoding.
DNA profiling is a forensic t ...
*
DNA supercoil
DNA supercoiling refers to the amount of twist in a particular DNA strand, which determines the amount of strain on it. A given strand may be "positively supercoiled" or "negatively supercoiled" (more or less tightly wound). The amount of a st ...
*
Eukaryotic chromosome fine structure
*
Gene expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. ...
*
Polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) ...
*
Tengiz Beridze
Tengiz Beridze (Georgian: თენგიზ გიორგის ძე ბერიძე) is a Georgian biochemist. He was born on 26 October 1939 in Tbilisi, Georgian SSR, USSR.
Career
In 1967 he discovered satellite DNA in plants. Throu ...
, scientist who discovered satellite DNA in plants
References
Further reading
*
*
External links
*
{{Repeated sequence
DNA
Repetitive DNA sequences