Salicide
   HOME

TheInfoList



OR:

The term salicide refers to a technology used in the
microelectronics Microelectronics is a subfield of electronics. As the name suggests, microelectronics relates to the study and manufacture (or microfabrication) of very small electronic designs and components. Usually, but not always, this means micrometre ...
industry used to form electrical contacts between the
semiconductor device A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivit ...
and the supporting
interconnect In telecommunications, interconnection is the physical linking of a carrier's network with equipment or facilities not belonging to that network. The term may refer to a connection between a carrier's facilities and the equipment belonging to its ...
structure. The salicide process involves the reaction of a metal
thin film A thin film is a layer of materials ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
with
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
in the active regions of the device, ultimately forming a metal
silicide A silicide is a type of chemical compound that combines silicon and a usually more electropositive element. Silicon is more electropositive than carbon. In terms of their physical properties, silicides are structurally closer to borides than t ...
contact through a series of annealing and/or etch processes. The term "salicide" is a compaction of the phrase self-aligned silicide. The description "self-aligned" suggests that the contact formation does not require
photolithography Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer. The process begins with a photosensiti ...
patterning processes, as opposed to a non-aligned technology such as polycide. The term salicide is also used to refer to the metal silicide formed by the contact formation process, such as "titanium salicide", although this usage is inconsistent with accepted naming conventions in chemistry.


Contact formation

The salicide process begins with deposition of a thin
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
layer over fully formed and patterned semiconductor devices (e.g.
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
s). The wafer is heated, allowing the transition metal to react with exposed silicon in the active regions of the semiconductor device (e.g., source, drain, gate) forming a low-resistance
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
silicide. The transition metal does not react with the
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundan ...
nor the silicon nitride insulators present on the wafer. Following the reaction, any remaining transition metal is removed by chemical etching, leaving silicide contacts in only the active regions of the device. A fully integrable manufacturing process may be more complex, involving additional anneals, surface treatments, or etch processes.


Chemistry

Typical transition metals used or considered for use in salicide technology include
titanium Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
,
cobalt Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
,
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
,
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
, and
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
. One key challenge in developing a salicide process is controlling the specific phase (compound) formed by the metal-silicon reaction. Cobalt, for example, may react with silicon to form Co2Si, CoSi, CoSi2, and other compounds. However, only CoSi2 has a sufficiently low resistance to form an effective electrical contact. For some compounds, the desired high-resistance phase is not thermodynamically stable, such as C49- TiSi2, which is
metastable In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
with respect to the low-resistance C54 phase.


Other considerations

Another challenge facing successful process integration include lateral growth, especially underneath the gate, which will
short circuit A short circuit (sometimes abbreviated to short or s/c) is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit ...
the device.


See also

*
Self-aligned gate In semiconductor electronics fabrication technology, a self-aligned gate is a transistor manufacturing approach whereby the gate electrode of a MOSFET (metal–oxide–semiconductor field-effect transistor) is used as a mask for the doping of the ...


References

{{Wiktionary Semiconductor device fabrication Silicon