STR Analysis
   HOME

TheInfoList



OR:

Short tandem repeat (STR) analysis is a common
molecular biology Molecular biology is a branch of biology that seeks to understand the molecule, molecular basis of biological activity in and between Cell (biology), cells, including biomolecule, biomolecular synthesis, modification, mechanisms, and interactio ...
method used to compare allele repeats at specific loci in
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
between two or more samples. A short tandem repeat is a
microsatellite A microsatellite is a tract of repetitive DNA in which certain Sequence motif, DNA motifs (ranging in length from one to six or more base pairs) are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organ ...
with repeat units that are 2 to 7 base pairs in length, with the number of repeats varying among individuals, making STRs effective for human identification purposes. This method differs from restriction fragment length polymorphism analysis (RFLP) since STR analysis does not cut the DNA with restriction enzymes. Instead,
polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed st ...
(PCR) is employed to discover the lengths of the short tandem repeats based on the length of the PCR product.


Forensic uses

STR analysis is a tool in
forensic analysis Forensic science combines principles of law and science to investigate criminal activity. Through crime scene investigations and laboratory analysis, forensic scientists are able to link suspects to evidence. An example is determining the time and ...
that evaluates specific STR regions found on
nuclear DNA Nuclear DNA (nDNA), or nuclear deoxyribonucleic acid, is the DNA contained within each cell nucleus of a eukaryotic organism. It encodes for the majority of the genome in eukaryotes, with mitochondrial DNA and plastid DNA coding for the rest. ...
. The variable (polymorphic) nature of the STR regions that are analyzed for forensic testing intensifies the discrimination between one DNA profile and another. Scientific tools such as FBI approved STRmix incorporate this research technique. Forensic science takes advantage of the population's variability in STR lengths, enabling scientists to distinguish one DNA sample from another. The system of
DNA profiling DNA profiling (also called DNA fingerprinting and genetic fingerprinting) is the process of determining an individual's deoxyribonucleic acid (DNA) characteristics. DNA analysis intended to identify a species, rather than an individual, is cal ...
used today is based on PCR and uses simple sequences or short tandem repeats (STR). This method uses highly polymorphic regions that have short repeated sequences of DNA (the most common is 4 bases repeated, but there are other lengths in use, including 3 and 5 bases). Because unrelated people almost certainly have different numbers of repeat units, STRs can be used to discriminate between unrelated individuals. These STR loci (locations on a chromosome) are targeted with sequence-specific primers and amplified using PCR. The DNA fragments that result are then separated and detected using
electrophoresis Electrophoresis is the motion of charged dispersed particles or dissolved charged molecules relative to a fluid under the influence of a spatially uniform electric field. As a rule, these are zwitterions with a positive or negative net ch ...
. There are two common methods of separation and detection,
capillary electrophoresis Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels. Very often, CE refers to capillary zone electrophoresis (CZE), but other electr ...
(CE) and
gel electrophoresis Gel electrophoresis is an electrophoresis method for separation and analysis of biomacromolecules (DNA, RNA, proteins, etc.) and their fragments, based on their size and charge through a gel. It is used in clinical chemistry to separate ...
. Each STR is polymorphic, but the number of alleles is very small. Typically each STR allele will be shared by around 5 - 20% of individuals. The power of STR analysis comes from looking at multiple STR loci simultaneously. The pattern of alleles can identify an individual quite accurately. Thus STR analysis provides an excellent identification tool. The more STR regions that are tested in an individual the more discriminating the test becomes. However, given 10 STR loci, it can result in a genotyping error margin of 30%, or nearly one third (1/3) of the time. Even when using 15 identifier microsatellite STR loci, they are not informative markers for inference of ancestry, a much larger set of genetic markers is needed to detect fine-scale population structure. A study claimed 30 DIP-STRs were found to be suitable for prenatal paternity testing and roughly outlining biogeographic ancestry in forensics, but more markers and multiplex panels need to be developed to promote use of this original approach. When comparing SNP and STR analysis, the use of high-quality SNPs has proven to be better for delineating population structure, as well as genetic relationships at the individual and population level. Using the best 15 SNPs (30 alleles) was similar to the best 4 STR loci (83 alleles), and increasing the STR made no difference, but increasing to 100 SNPs substantially increased assignment giving the highest result. Researchers found that some of the STR loci out-performed the SNP loci on a single locus basis, but combinations of SNPs outperformed the STRs based upon total number of alleles. The SNPs from a larger panel gave significantly more accurate individual genetic self-assignment compared to any combination of the STR loci. From country to country, different STR-based DNA-profiling systems are in use. In North America, systems that amplify the
CODIS The Combined DNA Index System (CODIS) is the United States national DNA database created and maintained by the Federal Bureau of Investigation. CODIS consists of three levels of information; Local DNA Index Systems (LDIS) where DNA profiles ori ...
20 core loci are almost universal, whereas in the United Kingdom the DNA-17 17 loci system (which is compatible with The
National DNA Database A DNA database or DNA databank is a database of DNA profiling, DNA profiles which can be used in the analysis of genetic diseases, genetic fingerprinting for criminology, or genetic genealogy. DNA databases may be public or private, the largest ...
) is in use. Whichever system is used, many of the STR regions used are the same. These DNA-profiling systems are based on multiplex reactions, whereby many STR regions will be tested at the same time. The true power of STR analysis is in its statistical power of discrimination. Because the 20 loci that are currently used for discrimination in CODIS are independently assorted (having a certain number of repeats at one locus does not change the likelihood of having any number of repeats at any other locus), the product rule for probabilities can be applied. This means that, if someone has the DNA type of ABC, where the three loci were independent, we can say that the probability of having that DNA type is the probability of having type A times the probability of having type B times the probability of having type C. This has resulted in the ability to generate match probabilities of 1 in a quintillion (1x1018) or more. However, DNA database searches showed much more frequent than expected false DNA profile matches. Moreover, since there are about 12 million
monozygotic twins Twins are two offspring produced by the same pregnancy.MedicineNet > Definition of Twin Last Editorial Review: 19 June 2000 Twins can be either ''monozygotic'' ('identical'), meaning that they develop from one zygote, which splits and forms two e ...
on Earth, the theoretical probability is not accurate. In practice, the risk of contaminated-matching is much greater than matching a distant relative, such as contamination of a sample from nearby objects, or from left-over cells transferred from a prior test. The risk is greater for matching the most common person in the samples: Everything collected from, or in contact with, a victim is a major source of contamination for any other samples brought into a lab. For that reason, multiple control-samples are typically tested in order to ensure that they stayed clean, when prepared during the same period as the actual test samples. Unexpected matches (or variations) in several control-samples indicates a high probability of contamination for the actual test samples. In a relationship test, the full DNA profiles should differ (except for twins), to prove that a person was not matched as being related to their own DNA in another sample. In biomedical research, STR profiles are used to authenticate cell lines. Self-generated STR profiles can be compared with databases such as CLASTR (https://www.cellosaurus.org/cellosaurus-str-search/) or STRBase (https://strbase.nist.gov/). In addition, self-generated primary murine cell lines cultured before the first passaging can be matched with later passages, thus ensuring the identity of the cell line.


See also

* STR multiplex system * Snpstr *
Y-STR A Y-STR is a short tandem repeat (STR) on the Y-chromosome. Y-STRs are often used in forensics, paternity, and genealogical DNA testing. Y-STRs are taken specifically from the male Y chromosome. These Y-STRs provide a weaker analysis than autoso ...
* List of Y-STR markers * List of X-STR markers * Earth Human STR Allele Frequencies Database


References

{{reflist Biochemistry detection methods DNA profiling techniques Genomics Forensic genetics