History
SHINE Technologies originated fromProducts and services
Medical isotopes
SHINE Technologies plans to produce a range of isotopes, especially focused on those that are produced with neutrons such as Molybdenum-99 (Mo-99), which is used to create Tc-99m for diagnostic scans. SHINE's fusion-driven Mo-99 production technology expects to reduce nuclear waste and improve reliability compared to traditional methods. This approach uses fusion-driven sub-critical targets and allows for the reuse of low-enriched uranium. SHINE's Chrysalis facility incorporates multiple production systems to ensure continued supply of radioisotopes even if one accelerator is offline. SHINE also produces n.c.a. Lutetium-177, a radioactive isotope used in targeted cancer therapy and its precursor material ytterbium-176 (Yb-176). In 2024, SHINE submitted a Drug Master File to the FDA for n.c.a. Lu-177 and opened Cassiopeia, North America's largest Lu-177 processing facility, with an initial production capacity of 100,000 doses per year, expandable to 200,000 doses. Producing Lu-177 in North America reduces transit times and minimizes decay losses during shipping. Today, SHINE uses neutrons from external reactors to irradiate Yb-176, but anticipates that it will switch to internal sources as its Chrysalis facility comes online.Radiation effects testing
SHINE Technologies offers FLARE (Fusion Linear Accelerator for Radiation Effects Testing), providing high fluence 14 MeV neutrons for testing the reliability of components under radiation. This service is used in various fusion technology applications including materials validation and breeder blanket development, as well as defense and commercial rad-hardness testing.Facilities
SHINE Technologies operates several facilities: * Chrysalis: Currently under construction at the Janesville, Wisconsin campus, it is planned to serve as a flexible irradiation source and a site for producing fission and neutron capture based isotopes (including molybdenum-99 and lutetium-177). Chrysalis will use SHINE's fusion technology to drive much of the irradiation process, and the facility will house several fusion based neutron generators. * Cassiopeia: Opened in 2024 at the Janesville campus, it is the largest production facility for non-carrier-added lutetium-177 (n.c.a. Lu-177) in North America, with a capacity of up to 100,000 patient doses per year. * Building One: SHINE's research and development proving ground, Building One is where SHINE's high output DT fusion sources were first demonstrated and where its commercial Lu-177 processing technology was developed. It also serves as the operating location for the FLARE rad-effects testing business. * Heliopolis: Located in Fitchburg, Wisconsin, this facility houses the SHINE internal systems and manufacturing organization. This is where SHINE manufactures internal equipment for fusion and nuclear technology manufacturing. * Veendam, Netherlands: SHINE has a small office here with plans to establish irradiation and isotope production facilities, marking the company's expansion into the European market.Business strategy
SHINE Technologies employs a four-phased business strategy aimed at leveraging current fusion technology for revenue generation and reinvestment that enable steady and sustainable progress towards commercial fusion energy. *Phase 1: Neutron testing: This phase uses fusion technology for non-destructive testing in industries such as aerospace, defense, and energy, and includes neutron imaging and rad-effects testing. Today, the neutron imaging service is operated through SHINE's sister company, Phoenix Neutron Imaging. These services, historically provided by aged fission reactors are now being transitioned to SHINE's fusion-based technologies. *Phase 2: Medical isotope production: SHINE focuses on producing neutron-based isotopes including molybdenum-99 (Mo-99) for medical imaging and non-carrier-added lutetium-177 (n.c.a. Lu-177) for cancer treatment. Its goal over time is to reduce the world's reliance on fission reactors by replacing that capacity with fusion-based neutron generation, as it has already demonstrated in phase 1. *Phase 3: Recycling nuclear waste: SHINE plans to build a pilot plant for recycling used nuclear fuel from light water reactors, utilizing fusion neutron generation technology to transmute long-lived isotopes into shorter-lived or stable elements. The pilot plant is designed to be proliferation resistant initially targeting a modified PUREX process called codecontamination (CoDCon) for uranium/plutonium recycle, along with an actinide-lanthanide separation (ALSEP) process to isolate minor actinides for future transmutation. The process for recycling waste mirrors the isotope production and separation process used in SHINE's Chrysalis facility. Fusion transmutation facilities in phase 3 are expected to be similar to devices planned for fusion energy while operating at much lower operational uptime, not needing to be Q>1, and receiving higher payment per reaction versus fusion energy. *Phase 4: Commercial fusion energy: The ultimate goal of SHINE is to achieve commercially viable fusion energy generation, building on the knowledge, technology, and experience developed in the previous phases.References
External links
* {{authority control 2010 establishments in Wisconsin Nuclear medicine organizations Dane County, Wisconsin Janesville, Wisconsin Health care companies based in Wisconsin