History
The first cDNA encoding the beta subunit of ENaC was cloned and sequenced by Canessa et al. from rat mRNA. A year later, two independent groups reported the cDNA sequences of the beta- and gamma-subunits of the human ENaC. The exon-intron organization of the human beta ENaC gene SCNN1B was determined by Saxena et al. by sequencing genomic DNA from three subjects from three different ethnic groups. This study also established that the exon-intron architecture of the three subunits of ENaC have remained highly conserved despite the divergence of their sequences.Gene structure
While the human geneTissue-specific expression
The three ENaC subunits encoded byProtein structure
The primary structures of all four ENaC subunits show strong similarity. Thus, these four proteins represent a family of proteins that share a common ancestor. In global alignment (meaning alignments of sequences along their entire length and not just a partial segment), the human β subunit shares 34% identity with the γ subunit and 26 and 23% identity with the α and δ subunits. All four ENaC subunit sequences have two hydrophobic stretches that form two transmembrane segments named as TM1 and TM2. In the membrane-bound form, the TM segments are embedded in the membrane bilayer, the amino- and carboxy-terminal regions are located inside the cell, and the segment between the two TMs remains outside of the cell as the extracellular region of ENaC. This extracellular region includes about 70% of the residues of each subunit. Thus, in the membrane-bound form, the bulk of each subunit is located outside of the cell. The structure of ENaC has not been yet determined. Yet, the structure of a homologous protein ASIC1 has been resolved. The chicken ASIC1 structure revealed that ASIC1 is assembled as a homotrimer of three identical subunits. The authors of the original study suggested that each ASIC1 subunit resembles a hand holding a ball. Hence distinct domains of ASIC1 have been referred to as palm, knuckle, finger, thumb, and β-ball. Alignment of ENaC subunit sequences with ASIC1 sequence reveals that TM1 and TM2 segments and palm domain are conserved, and the knuckle, finger and thumb domains have insertions in ENaC. Site-directed mutagenesis studies on ENaC subunits provide evidence that many basic features of the ASIC1 structural model apply to ENaC as well. Yet, ENaC is an obligate heterotrimer composed of three subunits as an αβγ or a βγδ trimer. In the carboxy terminus of three ENaC subunits, (α, β and γ) there is a special conserved consensus sequence PPPXYXXL that is called the PY motif. This sequence is recognized by the so-called WW domains in a special E3 ubiquitin-protein ligase named Nedd4-2. Nedd4-2 ligatesAssociated diseases
At present, three major hereditary disorders are known to be associated with mutations in the SCNN1B gene. These are: 1. Multisystem pseudohypoaldosteronism, 2. Liddle syndrome, and 3. Cystic fibrosis-like disease.Multi-system form of type I pseudohypoaldosteronism (PHA1B)
The disease most commonly associated with mutations in SCNN1B is the multi-system form of type I pseudohypoaldosteronism (PHA1B) that was first characterized by A. Hanukoglu as an autosomal recessive disease. This is a syndrome of unresponsiveness to aldosterone in patients that have high serum levels of aldosterone but suffer from symptoms of aldosterone deficiency with a high risk of mortality due to severe salt loss. Initially, this disease was thought to be a result of a mutation in the mineralocorticoid receptor (NR3C2) that binds aldosterone. But homozygosity mapping in 11 affected families revealed that the disease is associated with two loci on chromosome 12p13.1-pter and chromosome 16p12.2-13 that include the genes for SCNN1A and SCNN1B and SCNN1G respectively. Sequencing of the ENaC genes identified mutation in affected patients, and functional expression of the mutated cDNAs further confirmed that identified mutations lead to the loss of activity of ENaC. In the majority of the patients with multi-system PHA1B a homozygous mutation or two compound heterozygous mutations have been detected.Liddle syndrome
Liddle syndrome is generally caused by mutations in the PY motif or truncation of the C-terminus including loss of the PY motif in the β or γ ENaC subunits. Even though there is a PY motif also in the α subunit, so far Liddle disease has not observed in association with a mutation in the α subunit. Liddle syndrome is inherited as an autosomal dominant disease with a phenotype that includes early onset hypertension, metabolic alkalosis and low levels of plasma renin activity and mineralocorticoid hormone aldosterone. In the absence of a recognizable PY motif, ubiquitin-protein ligase Nedd4-2 cannot bind to the ENaC subunit and hence cannot attach a ubiquitin to it. Consequently, proteolysis of ENaC by proteasome is inhibited and ENaC accumulates in the membrane leading to enhanced activity of ENaC that causes hypertension.Interactions
SCNN1B has been shown to interact with WWP2 andNotes
References
Further reading
* *External links
* {{DEFAULTSORT:Scnn1b Sodium channels