Sodium channel protein type 4 subunit alpha is a
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''SCN4A''
gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
.
The Na
v1.4
voltage-gated sodium channel
Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (''e.g.'', muscle, glial cells, neurons, etc.) with a permeability t ...
is encoded by the gene. Mutations in the gene are associated with
hypokalemic periodic paralysis
Hypokalemic periodic paralysis (hypoKPP), also known as familial hypokalemic periodic paralysis (FHPP), is a rare, autosomal dominant channelopathy characterized by muscle weakness or paralysis when there is a fall in potassium levels in the bl ...
,
hyperkalemic periodic paralysis
Hyperkalemic periodic paralysis (HYPP, HyperKPP) is an inherited autosomal dominant disorder that affects sodium channels in muscle cells and the ability to regulate potassium levels in the blood. It is characterized by muscle hyperexcitability ...
,
paramyotonia congenita
''Paramyotonia congenita'' (PC) is a rare congenital autosomal dominant neuromuscular disorder characterized by "paradoxical" myotonia. This type of myotonia has been termed paradoxical because it becomes worse with exercise whereas classical my ...
, and
potassium-aggravated myotonia
Potassium-aggravated myotonia is a rare genetic disorder that affects skeletal muscle. Beginning in childhood or adolescence, people with this condition experience bouts of sustained muscle tensing (myotonia) that prevent muscles from relaxing no ...
.
Function
Voltage-gated sodium channels are
transmembrane
A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequently u ...
glycoprotein
Glycoproteins are proteins which contain oligosaccharide (sugar) chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known a ...
complexes composed of a large alpha subunit with 24
transmembrane domain
A transmembrane domain (TMD, TM domain) is a membrane-spanning protein domain. TMDs may consist of one or several alpha-helices or a transmembrane beta barrel. Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in ...
s and one or more regulatory beta subunits. They are responsible for the generation and propagation of
action potential
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
s in neurons and muscle. This gene encodes one member of the sodium channel alpha subunit gene family. It is expressed in
skeletal muscle
Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
, and mutations in this gene have been linked to several myotonia and periodic paralysis disorders.
Clinical significance
Periodic paralysis
In hypokalemic
periodic paralysis
Periodic paralysis is a group of rare genetic diseases that lead to weakness or paralysis from common triggers such as cold, heat, high carbohydrate meals, not eating, stress or excitement and physical activity of any kind. The underlying mechani ...
,
arginine
Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidinium, guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) a ...
residues making up the
voltage sensor of Na
v1.4 are mutated. The voltage sensor comprises the S4
alpha helix
An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix).
The alpha helix is the most common structural arrangement in the Protein secondary structure, secondary structure of proteins. It is al ...
of each of the four transmembrane domains (I-IV) of the protein, and contains
basic
Basic or BASIC may refer to:
Science and technology
* BASIC, a computer programming language
* Basic (chemistry), having the properties of a base
* Basic access authentication, in HTTP
Entertainment
* Basic (film), ''Basic'' (film), a 2003 film
...
residues that only allow entry of the positive sodium ions at appropriate membrane voltages by blocking or opening the channel pore. In patients with these mutations, the channel has a reduced excitability and signals from the central nervous system are unable to
depolarise muscle. As a result, the muscle cannot contract efficiently, causing paralysis. The condition is hypokalemic because a low extracellular potassium ion concentration will cause the muscle to repolarise to the
resting potential
The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential. The re ...
more quickly, so even if calcium conductance does occur it cannot be sustained. It becomes more difficult to reach the calcium threshold at which the muscle can contract, and even if this is reached then the muscle is more likely to relax. Because of this, the severity would be reduced if potassium ion concentrations are kept high.
In hyperkalemic periodic paralysis, mutations occur in residues between transmembrane domains III and IV which make up the fast inactivation gate of Na
v1.4. Mutations have also been found on the cytoplasmic loops between the S4 and S5 helices of domains II, III and IV, which are the binding sites of the inactivation gate.
In patients with these the channel is unable to inactivate, sodium conductance is sustained and the muscle remains permanently tense. Since the
motor end plate
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber.
It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction.
Muscles require innervation to ...
is depolarized, further signals to contract have no effect (paralysis). The condition is hyperkalemic because a high extracellular potassium ion concentration will make it even more unfavourable for potassium to leave the cell in order to repolarise it to the
resting potential
The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential. The re ...
, and this further prolongs the sodium conductance and keeps the muscle contracted. Hence, the severity would be reduced if extracellular (serum) potassium ion concentrations are kept low.
Myotonia
The same types of mutations cause
myotonia
Myotonia is a symptom of a small handful of certain neuromuscular disorders characterized by delayed relaxation (prolonged contraction) of the skeletal muscles after voluntary contraction or electrical stimulation, and the muscle shows an abnor ...
and paralysis, however the difference between these phenotypes depends on the level of sodium current that persists. If the conductance fluctuates below the voltage threshold for Na
v1.4, then the sodium channels will eventually be able to close, and be depolarised again. Thus, the muscle merely remains contracted for longer than normal (myotonia) but will relax and be able to contract again within a short period. If the conductance settles at a steady state with the sodium pore open and unable to inactivate, then the muscle is unable to relax at all and motor control is completely lost (paralysis).
References
Further reading
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
{{NLM content
Electrophysiology
Sodium channels