HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, specifically in
elementary arithmetic Elementary arithmetic is a branch of mathematics involving addition, subtraction, multiplication, and Division (mathematics), division. Due to its low level of abstraction, broad range of application, and position as the foundation of all mathema ...
and
elementary algebra Elementary algebra, also known as high school algebra or college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variable (mathematics ...
, given an equation between two fractions or rational expressions, one can cross-multiply to simplify the equation or determine the value of a variable. The method is also occasionally known as the "cross your heart" method because lines resembling a heart outline can be drawn to remember which things to multiply together. Given an equation like : \frac a b = \frac c d, where and are not zero, one can cross-multiply to get : ad = bc \quad \text \quad a = \fracd. In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
the same calculation can be achieved by considering the
ratio In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
s as those of similar triangles.


Procedure

In practice, the method of cross-multiplying means that we multiply the numerator of each (or one) side by the denominator of the other side, effectively crossing the terms over: : \frac a b \nwarrow \frac c d, \quad \frac a b \nearrow \frac c d. The mathematical justification for the method is from the following longer mathematical procedure. If we start with the basic equation : \frac a b = \frac c d, we can multiply the terms on each side by the same number, and the terms will remain equal. Therefore, if we multiply the fraction on each side by the product of the denominators of both sides——we get : \frac a b \times bd = \frac c d \times bd. We can reduce the fractions to lowest terms by noting that the two occurrences of on the left-hand side cancel, as do the two occurrences of on the right-hand side, leaving : ad = bc, and we can divide both sides of the equation by any of the elements—in this case we will use —getting : a = \fracd. Another justification of cross-multiplication is as follows. Starting with the given equation : \frac a b = \frac c d, multiply by = 1 on the left and by = 1 on the right, getting : \frac a b \times \frac d d = \frac c d \times \frac b b, and so : \frac = \frac. Cancel the common denominator = , leaving : ad = cb. Each step in these procedures is based on a single, fundamental property of
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
s. Cross-multiplication is a shortcut, an easily understandable procedure that can be taught to students.


Use

This is a common procedure in mathematics, used to reduce fractions or calculate a value for a given variable in a fraction. If we have an equation : \frac x b = \frac c d, where is a variable we are interested in solving for, we can use cross-multiplication to determine that : x = \fracd. For example, suppose we want to know how far a car will travel in 7 hours, if we know that its speed is constant and that it already travelled 90 miles in the last 3 hours. Converting the word problem into ratios, we get : \frac x = \frac . Cross-multiplying yields : x = \frac, and so : x = 210\ \text. Alternate solution =30mph So, 30mph×7hours=210miles. Note that even simple equations like : a = \frac are solved using cross-multiplication, since the missing term is implicitly equal to 1: : \frac a 1 = \frac x d. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator. This step is called '' clearing fractions''.


Rule of three

The rule of three was a historical shorthand version for a particular form of cross-multiplication that could be taught to students by rote. It was considered the height of Colonial maths education and still figures in the French national curriculum for secondary education, and in the primary education curriculum of Spain. For an equation of the form : \frac a b = \frac c x, where the variable to be evaluated is in the right-hand denominator, the rule of three states that : x = \fraca. In this context, is referred to as the ''extreme'' of the proportion, and and are called the ''means''. This rule was already known to Chinese mathematicians prior to the 2nd century CE, though it was not used in Europe until much later. Cocker's Arithmetick, the premier textbook in the 17th century, introduces its discussion of the rule of three with the problem "If 4 yards of cloth cost 12 shillings, what will 6 yards cost at that rate?" The rule of three gives the answer to this problem directly; whereas in modern arithmetic, we would solve it by introducing a variable to stand for the cost of 6 yards of cloth, writing down the equation : \frac = \frac and then using cross-multiplication to calculate : : x = \frac = 18\ \text. An anonymous manuscript dated 1570 said: "Multiplication is vexation, / Division is as bad; / The Rule of three doth puzzle me, / And Practice drives me mad."
Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English Natural history#Before 1900, naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all speci ...
refers to his use of the rule of three in estimating the number of species in a newly discerned genus. In a letter to William Darwin Fox in 1855, Charles Darwin declared “I have no faith in anything short of actual measurement and the Rule of Three.”
Karl Pearson Karl Pearson (; born Carl Pearson; 27 March 1857 – 27 April 1936) was an English biostatistician and mathematician. He has been credited with establishing the discipline of mathematical statistics. He founded the world's first university ...
adopted this declaration as the motto of his newly founded journal Biometrika.


Double rule of three

An extension to the rule of three was the double rule of three, which involved finding an unknown value where five rather than three other values are known. An example of such a problem might be ''If 6 builders can build 8 houses in 100 days, how many days would it take 10 builders to build 20 houses at the same rate?'', and this can be set up as : \frac = \frac, which, with cross-multiplication twice, gives : x = \frac = 150\ \text.
Lewis Carroll Charles Lutwidge Dodgson (27 January 1832 – 14 January 1898), better known by his pen name Lewis Carroll, was an English author, poet, mathematician, photographer and reluctant Anglicanism, Anglican deacon. His most notable works are ''Alice ...
's " The Mad Gardener's Song" includes the lines "He thought he saw a Garden-Door / That opened with a key: / He looked again, and found it was / A double Rule of Three".'' Sylvie and Bruno'', Chapter 12.


See also

* Cross-ratio *
Odds ratio An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B ...
* Trairāśika *
Turn (angle) The turn (symbol tr or pla) is a unit of plane angle measurement that is the measure of a complete angle—the angle subtended by a complete circle at its center. One turn is equal to  radians, 360  degrees or 400  gradians. ...
* Unitary method


References


Further reading

* Brian Burell: ''Merriam-Webster's Guide to Everyday Math: A Home and Business Reference''. Merriam-Webster, 1998, , pp
85-101




* - facsimile of the relevant section

* ttp://www.rhymes.org.uk/a61-multiplication.htm The Rule Of Three in Mother Goose
Rudyard Kipling: You can work it out by Fractions or by simple Rule of Three, But the way of Tweedle-dum is not the way of Tweedle-dee.


External links

* {{Authority control Fractions (mathematics) Arithmetic