Rowbottom Cardinal
   HOME

TheInfoList



OR:

In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, a Rowbottom cardinal, introduced by , is a certain kind of
large cardinal In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...
number. An
uncountable In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger tha ...
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
\kappa is said to be ''\lambda-Rowbottom'' if for every function ''f'': kappa;sup><ω → λ (where λ < κ) there is a set ''H'' of order type \kappa that is quasi-
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
for ''f'', i.e., for every ''n'', the ''f''-image of the set of ''n''-element subsets of ''H'' has < \lambda elements. \kappa is ''Rowbottom'' if it is ''\omega_1 - Rowbottom''. Every
Ramsey cardinal In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by and named after Frank P. Ramsey, whose theorem, called Ramsey's theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize t ...
is Rowbottom, and every Rowbottom cardinal is Jónsson. By a theorem of Kleinberg, the theories ZFC + “there is a Rowbottom cardinal” and ZFC + “there is a Jónsson cardinal” are equiconsistent. In general, Rowbottom cardinals need not be
large cardinal In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...
s in the usual sense: Rowbottom cardinals could be
singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singula ...
. It is an open question whether ZFC + “\aleph_ is Rowbottom” is consistent. If it is, it has much higher consistency strength than the existence of a Rowbottom cardinal. The
axiom of determinacy In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game o ...
does imply that \aleph_ is Rowbottom (but contradicts the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
).


References

* * Large cardinals {{settheory-stub