In
post-quantum cryptography, ring learning with errors (RLWE) is a
computational problem
In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring
:"Given a positive integer ''n'', find a nontrivial prime factor of ''n''."
is a computational probl ...
which serves as the foundation of new cryptographic
algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s, such as
NewHope
In post-quantum cryptography, NewHope is a key-agreement protocol by Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe that is designed to resist quantum computer attacks.
NewHope is based on a mathematical problem ring learning with ...
, designed to protect against
cryptanalysis by
quantum computers and also to provide the basis for
homomorphic encryption
Homomorphic encryption is a form of encryption that permits users to perform computations on its encrypted data without first decrypting it. These resulting computations are left in an encrypted form which, when decrypted, result in an identical ...
.
Public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic a ...
relies on construction of mathematical problems that are believed to be hard to solve if no further information is available, but are easy to solve if some information used in the problem construction is known. Some problems of this sort that are currently used in cryptography are at risk of attack if sufficiently large quantum computers can ever be built, so resistant problems are sought. Homomorphic encryption is a form of encryption that allows computation on ciphertext, such as arithmetic on numeric values stored in an encrypted database.
RLWE is more properly called ''learning with errors over rings'' and is simply the larger
learning with errors (LWE) problem specialized to
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
s over finite fields.
Because of the presumed difficulty of solving the RLWE problem even on a quantum computer, RLWE based cryptography may form the fundamental base for
public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic a ...
in the future just as the
integer factorization and
discrete logarithm
In mathematics, for given real numbers ''a'' and ''b'', the logarithm log''b'' ''a'' is a number ''x'' such that . Analogously, in any group ''G'', powers ''b'k'' can be defined for all integers ''k'', and the discrete logarithm log' ...
problem have served as the base for public key cryptography since the early 1980s.
An important feature of basing cryptography on the ring learning with errors problem is the fact that the solution to the RLWE problem can be used to solve the
NP-hard
In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard pr ...
shortest vector problem In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: L ...
(SVP) in a lattice (a polynomial-time reduction from the SVP problem to the RLWE problem has been presented
).
Background
The security of modern cryptography, in particular
public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic a ...
, is based on the assumed intractability of solving certain computational problems if the size of the problem is large enough and the instance of the problem to be solved is chosen randomly. The classic example that has been used since the 1970s is the
integer factorization problem. It is believed that it is computationally intractable to factor the product of two prime numbers if those prime numbers are large enough and chosen at random. As of 2015 research has led to the factorization of the product of two 384-bit primes but not the product of two 512-bit primes.
Integer factorization forms the basis of the widely used
RSA
RSA may refer to:
Organizations Academia and education
* Rabbinical Seminary of America, a yeshiva in New York City
*Regional Science Association International (formerly the Regional Science Association), a US-based learned society
*Renaissance S ...
cryptographic algorithm.
The ring learning with errors (RLWE) problem is built on the arithmetic of
polynomials
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
with coefficients from a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
.
A typical polynomial
is expressed as:
:
Polynomials can be added and multiplied in the usual fashion. In the RLWE context the coefficients of the polynomials and all operations involving those coefficients will be done in a finite field, typically the field
for a prime integer
. The set of polynomials over a finite field with the operations of addition and multiplication forms an infinite
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
(