HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a rigid collection ''C'' of
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
s (for instance sets or functions) is one in which every ''c'' 
∈ In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called containing the first four positive integers (A = \), one could say that "3 is an element of ", expressed ...
 ''C'' is uniquely determined by less information about ''c'' than one would expect. The above statement does not define a
mathematical property In mathematics, a property is any characteristic that applies to a given set. Rigorously, a property ''p'' defined for all elements of a set ''X'' is usually defined as a function ''p'': ''X'' → , that is true whenever the property holds; or, ...
; instead, it describes in what sense the adjective "rigid" is typically used in mathematics, by mathematicians. __FORCETOC__


Examples

Some examples include: #
Harmonic function In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f\colon U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that i ...
s on the unit disk are rigid in the sense that they are uniquely determined by their boundary values. #
Holomorphic functions In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex deriv ...
are determined by the set of all derivatives at a single point. A smooth function from the real line to the complex plane is not, in general, determined by all its derivatives at a single point, but it is if we require additionally that it be possible to extend the function to one on a neighbourhood of the real line in the complex plane. The
Schwarz lemma In mathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex differential geometry that estimates the (squared) pointwise norm , \partial f , ^2 of a holomorphic map f:(X,g_X) \to (Y,g_Y) between Hermitian manifo ...
is an example of such a rigidity theorem. #By the
fundamental theorem of algebra The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant polynomial, constant single-variable polynomial with Complex number, complex coefficients has at least one comp ...
,
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s in C are rigid in the sense that any polynomial is completely determined by its values on any
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
, say N, or the
unit disk In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose d ...
. By the previous example, a polynomial is also determined within the set of holomorphic functions by the finite set of its non-zero derivatives at any single point. #Linear maps L(''X'', ''Y'') between vector spaces ''X'', ''Y'' are rigid in the sense that any L ∈ L(''X'', ''Y'') is completely determined by its values on any set of
basis vector In mathematics, a set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as ...
s of ''X''. # Mostow's rigidity theorem, which states that the geometric structure of negatively curved manifolds is determined by their topological structure. #A
well-ordered set In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then called a ...
is rigid in the sense that the only (
order-preserving In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
)
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
on it is the identity function. Consequently, an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
between two given well-ordered sets will be unique. # Cauchy's theorem on geometry of
convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
s states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules. #
Alexandrov's uniqueness theorem Alexandrov's theorem on polyhedra is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each othe ...
states that a convex polyhedron in three dimensions is uniquely determined by the
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
of
geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s on its surface. # Rigidity results in K-theory show isomorphisms between various
algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sens ...
groups. #Rigid groups in the
inverse Galois problem In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers \mathbb. This problem, first posed in the early 19th century, is unsolved. There ...
.


Combinatorial use

In
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
, the term rigid is also used to define the notion of a rigid surjection, which is a
surjection In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
f: n \to m for which the following equivalent conditions hold: # For every i, j \in m, i < j \implies \min f^(i) < \min f^(j); # Considering f as an n-
tuple In mathematics, a tuple is a finite sequence or ''ordered list'' of numbers or, more generally, mathematical objects, which are called the ''elements'' of the tuple. An -tuple is a tuple of elements, where is a non-negative integer. There is o ...
\big( f(0), f(1), \ldots, f(n-1) \big), the first occurrences of the elements in m are in increasing order; # f maps initial segments of n to initial segments of m. This relates to the above definition of rigid, in that each rigid surjection f uniquely defines, and is uniquely defined by, a partition of n into m pieces. Given a rigid surjection f, the partition is defined by n = f^(0) \sqcup \cdots \sqcup f^(m-1). Conversely, given a partition of n = A_0 \sqcup \cdots \sqcup A_, order the A_i by letting A_i \prec A_j \iff \min A_i < \min A_j. If n = B_0 \sqcup \cdots \sqcup B_ is now the \prec-ordered partition, the function f: n \to m defined by f(i) = j \iff i \in B_j is a rigid surjection.


See also

*
Uniqueness theorem In mathematics, a uniqueness theorem, also called a unicity theorem, is a theorem asserting the uniqueness of an object satisfying certain conditions, or the equivalence of all objects satisfying the said conditions. Examples of uniqueness theorems ...
*
Structural rigidity In discrete geometry and mechanics, structural rigidity is a combinatorial theory for predicting the flexibility of ensembles formed by rigid bodies connected by flexible linkages or hinges. Definitions Rigidity is the property of a structu ...
, a mathematical theory describing the
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
of ensembles of rigid physical objects connected together by flexible hinges. *
Level structure (algebraic geometry) In algebraic geometry, a level structure on a space ''X'' is an extra structure attached to ''X'' that shrinks or eliminates the automorphism group of ''X'', by demanding automorphisms to preserve the level structure; attaching a level structure is ...


References

{{PlanetMath attribution, id=6219, title=rigid Mathematical terminology