HOME

TheInfoList



OR:

A resonator is a device or system that exhibits
resonance Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
or resonant behavior. That is, it naturally oscillates with greater
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
at some
frequencies Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
or mechanical (including acoustic). Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as
radio transmitter In electronics and telecommunications, a radio transmitter or just transmitter (often abbreviated as XMTR or TX in technical documents) is an electronic device which produces radio waves with an antenna with the purpose of signal transmissio ...
s and quartz watches to produce oscillations of very precise frequency. A cavity resonator is one in which waves exist in a hollow space inside the device. In electronics and radio, microwave cavities consisting of hollow metal boxes are used in microwave transmitters, receivers and test equipment to control frequency, in place of the
tuned circuit An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act ...
s which are used at lower frequencies. Acoustic cavity resonators, in which sound is produced by air vibrating in a cavity with one opening, are known as Helmholtz resonators.


Explanation

A physical system can have as many resonant frequencies as it has
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
; each degree of freedom can vibrate as a
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force ''F'' proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive const ...
. Systems with one degree of freedom, such as a mass on a spring,
pendulum A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate i ...
s,
balance wheel A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position b ...
s, and LC tuned circuits have one resonant frequency. Systems with two degrees of freedom, such as coupled pendulums and resonant transformers can have two resonant frequencies. A
crystal lattice In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystal, crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that ...
composed of ''N'' atoms bound together can have ''N'' resonant frequencies. As the number of coupled harmonic oscillators grows, the time it takes to transfer energy from one to the next becomes significant. The vibrations in them begin to travel through the coupled harmonic oscillators in waves, from one oscillator to the next. The term ''resonator'' is most often used for a homogeneous object in which vibrations travel as waves, at an approximately constant velocity, bouncing back and forth between the sides of the resonator. The material of the resonator, through which the waves flow, can be viewed as being made of millions of coupled moving parts (such as atoms). Therefore, they can have millions of resonant frequencies, although only a few may be used in practical resonators. The oppositely moving waves interfere with each other, and at its resonant frequencies reinforce each other to create a pattern of
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect t ...
s in the resonator. If the distance between the sides is d\,, the length of a round trip is 2d\,. To cause resonance, the phase of a
sinusoidal A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is '' simple harmonic motion''; as rotation, it correspond ...
wave after a round trip must be equal to the initial phase so the waves self-reinforce. The condition for resonance in a resonator is that the round trip distance, 2d\,, is equal to an integer number of wavelengths \lambda\, of the wave: :2d = N\lambda,\qquad\qquad N \in \ If the velocity of a wave is c\,, the frequency is f = c / \lambda\, so the resonant frequencies are: :f = \frac\qquad\qquad N \in \ So the resonant frequencies of resonators, called
normal modes A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. ...
, are equally spaced multiples (
harmonic In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the ''fundamental frequency'' of a periodic signal. The fundamental frequency is also called the ''1st har ...
s) of a lowest frequency called the
fundamental frequency The fundamental frequency, often referred to simply as the ''fundamental'' (abbreviated as 0 or 1 ), is defined as the lowest frequency of a Periodic signal, periodic waveform. In music, the fundamental is the musical pitch (music), pitch of a n ...
. The above analysis assumes the medium inside the resonator is homogeneous, so the waves travel at a constant speed, and that the shape of the resonator is rectilinear. If the resonator is inhomogeneous or has a nonrectilinear shape, like a circular
drum The drum is a member of the percussion group of musical instruments. In the Hornbostel–Sachs classification system, it is a membranophone. Drums consist of at least one membrane, called a drumhead or drum skin, that is stretched over a ...
head or a cylindrical
microwave cavity A microwave cavity or radio frequency cavity (RF cavity) is a special type of resonator, consisting of a closed (or largely closed) metal structure that confines electromagnetic fields in the microwave or radio frequency, RF region of the spect ...
, the resonant frequencies may not occur at equally spaced multiples of the fundamental frequency. They are then called
overtone An overtone is any resonant frequency above the fundamental frequency of a sound. (An overtone may or may not be a harmonic) In other words, overtones are all pitches higher than the lowest pitch within an individual sound; the fundamental i ...
s instead of
harmonic In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the ''fundamental frequency'' of a periodic signal. The fundamental frequency is also called the ''1st har ...
s. There may be several such series of resonant frequencies in a single resonator, corresponding to different modes of vibration.


Electromagnetics


Resonant circuits

An electrical circuit composed of discrete components can act as a resonator when both an
inductor An inductor, also called a coil, choke, or reactor, is a Passivity (engineering), passive two-terminal electronic component, electrical component that stores energy in a magnetic field when an electric current flows through it. An inductor typic ...
and
capacitor In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term st ...
are included. Oscillations are limited by the inclusion of resistance, either via a specific
resistor A resistor is a passive two-terminal electronic component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
component, or due to resistance of the inductor windings. Such resonant circuits are also called
RLC circuit An RLC circuit is an electrical circuit consisting of a electrical resistance, resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote ...
s after the circuit symbols for the components. A distributed-parameter resonator has capacitance, inductance, and resistance that cannot be isolated into separate lumped capacitors, inductors, or resistors. An example of this, much used in filtering, is the helical resonator. An
inductor An inductor, also called a coil, choke, or reactor, is a Passivity (engineering), passive two-terminal electronic component, electrical component that stores energy in a magnetic field when an electric current flows through it. An inductor typic ...
consisting of a coil of wire, is self-resonant at a certain frequency due to the
parasitic capacitance Parasitic capacitance or stray capacitance is the unavoidable and usually unwanted capacitance that exists between the parts of an electronic component or circuit simply because of their proximity to each other. When two electrical conductors a ...
between its turns. This is often an unwanted effect that can cause parasitic oscillations in RF circuits. The self-resonance of inductors is used in a few circuits, such as the Tesla coil.


Cavity resonators

A ''cavity resonator'' is a hollow closed conductor such as a metal box or a cavity within a metal block, containing
electromagnetic wave In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
s (radio waves) reflecting back and forth between the cavity's walls. When a source of radio waves at one of the cavity's resonant frequencies is applied, the oppositely-moving waves form
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect t ...
s, and the cavity stores electromagnetic energy. Since the cavity's lowest resonant frequency, the fundamental frequency, is that at which the width of the cavity is equal to a half-wavelength (λ/2), cavity resonators are only used at
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
frequencies and above, where wavelengths are short enough that the cavity is conveniently small in size. Due to the low resistance of their conductive walls, cavity resonators have very high
Q factor In physics and engineering, the quality factor or factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost ...
s; that is their bandwidth, the range of frequencies around the resonant frequency at which they will resonate, is very narrow. Thus they can act as narrow
bandpass filter A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects ( attenuates) frequencies outside that range. It is the inverse of a '' band-stop filter''. Description In electronics and s ...
s. Cavity resonators are widely used as the frequency determining element in microwave oscillators. Their resonant frequency can be tuned by moving one of the walls of the cavity in or out, changing its size.


Cavity magnetron

The
cavity magnetron The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of electrons wit ...
is a vacuum tube with a filament in the center of an evacuated, lobed, circular cavity resonator. A perpendicular magnetic field is imposed by a permanent magnet. The magnetic field causes the electrons, attracted to the (relatively) positive outer part of the chamber, to spiral outward in a circular path rather than moving directly to this anode. Spaced about the rim of the chamber are cylindrical cavities. The cavities are open along their length and so they connect with the common cavity space. As electrons sweep past these openings they induce a resonant high frequency radio field in the cavity, which in turn causes the electrons to bunch into groups. A portion of this field is extracted with a short antenna that is connected to a waveguide (a metal tube usually of rectangular cross section). The
waveguide A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency w ...
directs the extracted RF energy to the load, which may be a cooking chamber in a microwave oven or a high gain antenna in the case of radar.


Klystron

The
klystron A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian,Pond, Norman H. "The Tube Guys". Russ Cochran, 2008 p.31-40 which is used as an amplifier for high radio frequenci ...
, tube waveguide, is a beam tube including at least two apertured cavity resonators. The beam of charged particles passes through the apertures of the resonators, often tunable wave reflection grids, in succession. A collector electrode is provided to intercept the beam after passing through the resonators. The first resonator causes bunching of the particles passing through it. The bunched particles travel in a field-free region where further bunching occurs, then the bunched particles enter the second resonator giving up their energy to excite it into oscillations. It is a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
that works in conjunction with a specifically tuned cavity by the configuration of the structures. The reflex klystron is a klystron utilizing only a single apertured cavity resonator through which the beam of charged particles passes, first in one direction. A repeller electrode is provided to repel (or redirect) the beam after passage through the resonator back through the resonator in the other direction and in proper phase to reinforce the oscillations set up in the resonator.


Application in particle accelerators

On the beamline of an accelerator system, there are specific sections that are cavity resonators for
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the u ...
(RF) radiation. The (charged) particles that are to be accelerated pass through these cavities in such a way that the microwave electric field transfers energy to the particles, thus increasing their kinetic energy and thus accelerating them. Several large accelerator facilities employ superconducting niobium cavities for improved performance compared to metallic (copper) cavities.


Loop-gap resonator

The loop-gap resonator (LGR) is made by cutting a narrow slit along the length of a conducting tube. The slit has an effective capacitance and the bore of the resonator has an effective inductance. Therefore, the LGR can be modeled as an RLC circuit and has a resonant frequency that is typically between 200 MHz and 2 GHz. In the absence of radiation losses, the effective resistance of the LGR is determined by the resistivity and electromagnetic skin depth of the conductor used to make the resonator. One key advantage of the LGR is that, at its resonant frequency, its dimensions are small compared to the free-space wavelength of the electromagnetic fields. Therefore, it is possible to use LGRs to construct a compact and high-Q resonator that operates at relatively low frequencies where cavity resonators would be impractically large.


Dielectric resonators

If a piece of material with large dielectric constant is surrounded by a material with much lower dielectric constant, then this abrupt change in dielectric constant can cause confinement of an electromagnetic wave, which leads to a resonator that acts similarly to a cavity resonator.


Transmission-line resonators

Transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmis ...
s are structures that allow broadband transmission of electromagnetic waves, e.g. at radio or microwave frequencies. Abrupt change of impedance (e.g. open or short) in a transmission line causes reflection of the transmitted signal. Two such reflectors on a transmission line evoke standing waves between them and thus act as a one-dimensional resonator, with the resonance frequencies determined by their distance and the effective dielectric constant of the transmission line. A common form is the resonant stub, a length of transmission line terminated in either a
short circuit A short circuit (sometimes abbreviated to short or s/c) is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit ...
or open circuit, connected in series or parallel with a main transmission line. Planar transmission-line resonators are commonly employed for
coplanar In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. How ...
,
stripline In electronics, stripline is a transverse electromagnetic (TEM) transmission line medium invented by Robert M. Barrett of the Air Force Cambridge Research Centre in the 1950s. Stripline is the earliest form of planar transmission line. De ...
, and
microstrip Microstrip is a type of electrical transmission line which can be fabricated with any technology where a conductor is separated from a ground plane by a dielectric layer known as ''substrate''. Microstrip lines are used to convey microwave-freq ...
transmission lines. Such planar transmission-line resonators can be very compact in size and are widely used elements in microwave circuitry. In cryogenic solid-state research, superconducting transmission-line resonators contribute to solid-state spectroscopy and quantum information science.


Optical cavities

In a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
, light is amplified in a cavity resonator that is usually composed of two or more mirrors. Thus an ''
optical cavity An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that confines light waves similarly to how a cavity resonator confines microwaves. Optical cavities are a major component of lasers, ...
'', also known as a resonator, is a cavity with walls that reflect
electromagnetic waves In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ran ...
(i.e.
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
). This allows standing wave modes to exist with little loss.


Mechanical

Mechanical resonators are used in
electronic circuit An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or Conductive trace, traces through which electric current can flow. It is a t ...
s to generate signals of a precise
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
. For example, piezoelectric resonators, commonly made from
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
, are used as frequency references. Common designs consist of electrodes attached to a piece of quartz, in the shape of a rectangular plate for high frequency applications, or in the shape of a
tuning fork A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs ( ''tines'') formed from a U-shaped bar of elastic metal (usually steel). It resonates at a specific constant pitch when set vibrating by striking it ag ...
for low frequency applications. The high dimensional stability and low temperature coefficient of quartz helps keeps resonant frequency constant. In addition, the quartz's
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
property converts the mechanical vibrations into an oscillating
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
, which is picked up by the attached electrodes. These
crystal oscillator A crystal oscillator is an electronic oscillator Electrical circuit, circuit that uses a piezoelectricity, piezoelectric crystal as a frequency selective surface, frequency-selective element. The oscillator frequency is often used to keep trac ...
s are used in
quartz clock Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. The crystal oscillator, controlled by the resonant mechanical vibrations of the quartz crystal, creates a signal with ...
s and watches, to create the
clock signal In electronics and especially synchronous digital circuits, a clock signal (historically also known as ''logic beat'') is an electronic logic signal (voltage or current) which oscillates between a high and a low state at a constant frequency and ...
that runs computers, and to stabilize the output signal from
radio transmitter In electronics and telecommunications, a radio transmitter or just transmitter (often abbreviated as XMTR or TX in technical documents) is an electronic device which produces radio waves with an antenna with the purpose of signal transmissio ...
s. Mechanical resonators can also be used to induce a standing wave in other media. For example, a multiple degree of freedom system can be created by imposing a base excitation on a cantilever beam. In this case the
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect t ...
is imposed on the beam. This type of system can be used as a
sensor A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal. In the broadest definition, a sensor is a devi ...
to track changes in
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
or phase of the
resonance Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
of the fiber. One application is as a measurement device for dimensional metrology.


Acoustic

The most familiar examples of acoustic resonators are in
musical instrument A musical instrument is a device created or adapted to make Music, musical sounds. In principle, any object that produces sound can be considered a musical instrument—it is through purpose that the object becomes a musical instrument. A person ...
s. Every musical instrument has resonators. Some generate the sound directly, such as the wooden bars in a xylophone, the head of a
drum The drum is a member of the percussion group of musical instruments. In the Hornbostel–Sachs classification system, it is a membranophone. Drums consist of at least one membrane, called a drumhead or drum skin, that is stretched over a ...
, the strings in
stringed instrument In musical instrument classification, string instruments, or chordophones, are musical instruments that produce sound from vibrating strings when a performer strums, plucks, strikes or sounds the strings in varying manners. Musicians play so ...
s, and the pipes in an
organ Organ and organs may refer to: Biology * Organ (biology), a group of tissues organized to serve a common function * Organ system, a collection of organs that function together to carry out specific functions within the body. Musical instruments ...
. Some modify the sound by enhancing particular frequencies, such as the sound box of a
guitar The guitar is a stringed musical instrument that is usually fretted (with Fretless guitar, some exceptions) and typically has six or Twelve-string guitar, twelve strings. It is usually held flat against the player's body and played by strumming ...
or
violin The violin, sometimes referred to as a fiddle, is a wooden chordophone, and is the smallest, and thus highest-pitched instrument (soprano) in regular use in the violin family. Smaller violin-type instruments exist, including the violino picc ...
.
Organ pipe An organ pipe is a sound-producing element of the pipe organ that resonator, resonates at a specific Pitch (music), pitch when pressurized air (commonly referred to as ''wind'') is driven through it. Each pipe is tuned to a note of the musical ...
s, the bodies of
woodwind Woodwind instruments are a family of musical instruments within the greater category of wind instruments. Common examples include flute, clarinet, oboe, bassoon, and saxophone. There are two main types of woodwind instruments: flutes and Ree ...
s, and the sound boxes of stringed instruments are examples of acoustic cavity resonators.


Automobiles

The exhaust pipes in automobile
exhaust system An exhaust system is used to guide reaction exhaust gases away from a controlled combustion inside an engine or stove. The entire system conveys burnt gases from the engine and includes one or more exhaust pipes. Depending on the overall syste ...
s are designed as acoustic resonators that work with the muffler to reduce noise, by making sound waves "cancel each other out". The "exhaust note" is an important feature for some vehicle owners, so both the original manufacturers and the after-market suppliers use the resonator to enhance the sound. In " tuned exhaust" systems designed for performance, the resonance of the exhaust pipes can also be used to remove combustion products from the combustion chamber at a particular engine speed or range of speeds..


Percussion instruments

In many keyboard percussion instruments, below the centre of each note is a tube, which is an acoustic cavity resonator. The length of the tube varies according to the pitch of the note, with higher notes having shorter resonators. The tube is open at the top end and closed at the bottom end, creating a column of air that resonates when the note is struck. This adds depth and volume to the note. In string instruments, the body of the instrument is a resonator. The
tremolo In music, ''tremolo'' (), or ''tremolando'' (), is a trembling effect. There are multiple types of tremolo: a rapid repetition of a note, an alternation between two different notes, or a variation in volume. Tremolos may be either ''measured'' ...
effect of a
vibraphone The vibraphone (also called the vibraharp) is a percussion instrument in the metallophone family. It consists of tuned metal bars and is typically played by using Percussion mallet, mallets to strike the bars. A person who plays the vibraphone ...
is achieved via a mechanism that opens and shuts the resonators.


Stringed instruments

String instruments such as the bluegrass
banjo The banjo is a stringed instrument with a thin membrane stretched over a frame or cavity to form a resonator. The membrane is typically circular, and in modern forms is usually made of plastic, where early membranes were made of animal skin. ...
may also have resonators. Many five-string banjos have removable resonators, so players can use the instrument with a resonator in bluegrass style, or without it in
folk music Folk music is a music genre that includes #Traditional folk music, traditional folk music and the Contemporary folk music, contemporary genre that evolved from the former during the 20th-century folk revival. Some types of folk music may be ca ...
style. The term ''resonator'', used by itself, may also refer to the
resonator guitar A resonator guitar or resophonic guitar (often generically called a " Dobro") is an acoustic guitar that produces sound by conducting string vibrations through the bridge to one or more spun metal cones (resonators), instead of to the guitar' ...
. The modern ten-string guitar, invented by
Narciso Yepes Narciso Yepes (14 November 19273 May 1997) was a Spanish classical guitar, guitarist. He is considered one of the finest virtuoso classical guitarists of the twentieth century. Biography Yepes was born into a family of humble origin in Lorca, ...
, adds four sympathetic string resonators to the traditional classical guitar. By tuning these resonators in a very specific way (C, B♭, A♭, G♭) and making use of their strongest partials (corresponding to the octaves and fifths of the strings' fundamental tones), the bass strings of the guitar now resonate equally with any of the 12 tones of the chromatic octave. The guitar resonator is a device for driving guitar string harmonics by an electromagnetic field. This resonance effect is caused by a feedback loop and is applied to drive the fundamental tones, octaves, 5th, 3rd to an infinite sustain.


See also

* Coupling coefficient of resonators * Crab cavity *
Nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
*
Optical ring resonators An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. (These can be, but are not limited to being, waveguides.) The concepts behind optical ring Optical cavity, res ...
* Superconducting RF * Resonance chamber


References and notes


External links

*{{Commonscat-inline, Resonators Acoustics Electromagnetism concepts Musical instrument parts and accessories Mechanical vibrations Resonance