The replication factor C, or RFC, is a five-subunit
protein complex
A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multidomain enzymes, in which multiple active site, catalytic domains are found in a single polypeptide chain.
...
that is required for
DNA replication
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
.
The
subunits of this
heteropentamer are named
Rfc1,
Rfc2,
Rfc3
Replication factor C subunit 3 is a protein that in humans is encoded by the ''RFC3'' gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA t ...
,
Rfc4, and
Rfc5 in ''
Saccharomyces cerevisiae
''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
''. RFC is used in eukaryotic replication as a clamp loader, similar to the
γ Complex in ''
Escherichia coli
''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
''. Its role as a clamp loader involves catalyzing the loading of
PCNA onto DNA. It binds to the
3' end of the
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
and uses
ATP to open the ring of PCNA so that it can encircle the DNA. ATP hydrolysis causes the release of RFC, with concomitant clamp loading onto DNA. For DNA polymerase, RFC serves as primer identification. RFC plays an important role in the proliferation, invasion, and progression of various malignant tumors. RFC acts as a tumor suppressor gene.
RFC sub-units
The 5 subunits of replication factor C are
1.RFC1
40KDa
2.RFC2
0KDa
3.RFC3
8KDa
4.RFC4
7KDaref name=":0">
5.RFC5
6KDa
Eukaryotes, yeast, mice, drosophila, calf thymus, humans, rice, and Arabidopsis all contain 5 subunits. There are genes such as 13q12.3-q13, 3q27, and p140
FC1 p40
FC2 p38
FC3 p37
FC4 p36
FC5are located on human chromosomal segments. RFC Boxes
-8are the amino acid sequences found in human replication factor C.
RFC 1 is the largest RFC subunit, with 8RFC Boxes. Other RFC subunits also have 7 RFC boxes. RFC box 1 has a 90 amino acid-long region, while RFC box 2 is a highly conserved subunit. RFC box 3 includes a phosphate-binding loop. RFC box 5 is the second most conserved box. RFC Box 6 is different between the two subunits such as one large 6a and small 6b subunits.
Physiological functions of RFC in Humans
RFC is involved in the maintenance of telomeres, nuclear DNA replication, mismatch repair, and nucleotide excision repair. In the presence of ATP, RFC can load Proliferating cell nuclear antigen
CNAand DNA polymerase to form DNA-RFC-PCNA-DNA polymerase, which elongates in the presence of deoxynucleotides
NTPsvia the action of human single-stranded DNA-binding protein
SSB RFC acts as a DNA checkpoint, initiating repairs such as excisions and mismatch repair. RFC1 has a binding region that interacts with PCNA, which has been linked to Hutchinson-Gilford progeria syndrome
GPS RFC prevents cell death caused by histone H3K56. RFC2 can load PCNA into chromatin during DNA replication and it is also involved in DNA replication and repair, as well as cell cycle checkpoints.
RFC as a checkpoint
To minimize somatic genetic alterations, checkpoint mechanisms stimulate a cell cycle halt at precise locations when DNA and perhaps other cellular constitutes are destroyed and sustain the arrested state till the signals clearly show the healing process from the injury is obtained. RFC5 and RCF2 are also engaged in DNA damage checkpoints and DNA replication checkpoints. Replication factor C is an emergency backup factor for DNA polymerases. RFC2 gene product required for a cell cycle checkpoint.
RFC is a heteropentamer in budding yeast, it is encoded either by RFC1 and RFC2-5 genes. For polymerases δ and ε, RFC is a primer recognition factor.
During chromosomal DNA replication, the RFC2 gene product meets the RFC1 and RFC5 specific genes, in addition to both DNA polymerases δ and ɛ.
The rfc3+ gene is completely separated from fission yeast for DNA damage to regulate checkpoints. The checkpoint signal is also established by RFC3. To regulate the G2-M transition RFC proteins appear to be important in signal transmission to the checkpoint machinery.
References
DNA replication
{{Protein-stub