Flight feathers (''Pennae volatus'') are the long, stiff, asymmetrically shaped, but symmetrically paired
pennaceous feathers on the
wing
A wing is a type of fin that produces both Lift (force), lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform (aeronautics), planform. Wing efficiency is expressed as lift-to-d ...
s or tail of a bird; those on the wings are called remiges (), singular remex (), while those on the tail are called rectrices ( or ), singular rectrix (). The primary function of the flight feathers is to aid in the generation of both
thrust
Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that ...
and
lift, thereby enabling
flight
Flight or flying is the motion (physics), motion of an Physical object, object through an atmosphere, or through the vacuum of Outer space, space, without contacting any planetary surface. This can be achieved by generating aerodynamic lift ass ...
. The flight feathers of some birds perform additional functions, generally associated with territorial displays, courtship rituals or feeding methods. In some species, these feathers have developed into long showy plumes used in visual courtship displays, while in others they create a sound during display flights. Tiny serrations on the leading edge of their remiges help
owls to fly silently (and therefore hunt more successfully), while the extra-stiff rectrices of
woodpeckers help them to brace against tree trunks as they hammer on them. Even flightless birds still retain flight feathers, though sometimes in radically modified forms.
The remiges are divided into primary and secondary feathers based on their position along the wing. There are typically 11 primaries attached to the manus (six attached to the metacarpus and five to the phalanges), but the outermost primary, called the remicle, is often rudimentary or absent; certain birds, notably the flamingos, grebes, and storks, have seven primaries attached to the metacarpus and 12 in all. Secondary feathers are attached to the ulna. The fifth secondary remex (numbered inwards from the carpal joint) was formerly thought to be absent in some species, but the modern view of this diastataxy is that there is a gap between the fourth and fifth secondaries. Tertiary feathers growing upon the adjoining portion of the brachium are not considered true remiges.
The moult of their flight feathers can cause serious problems for birds, as it can impair their ability to fly. Different species have evolved different strategies for coping with this, ranging from dropping all their flight feathers at once (and thus becoming flightless for some relatively short period of time) to extending the moult over a period of several years.
Remiges

Remiges (from the Latin for "oarsman") are located on the
posterior side of the wing.
Ligament
A ligament is a type of fibrous connective tissue in the body that connects bones to other bones. It also connects flight feathers to bones, in dinosaurs and birds. All 30,000 species of amniotes (land animals with internal bones) have liga ...
s attach the long ''calami'' (quills) firmly to the wing bones, and a thick, strong band of
tendinous tissue known as the ''postpatagium'' helps to hold and support the remiges in place. Corresponding remiges on individual birds are
symmetrical between the two wings, matching to a large extent in size and shape (except in the case of
mutation
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
or damage), though not necessarily in the pattern. They are given different names depending on their position along the wing.
Primaries
Primaries are connected to the
manus (the bird's "hand", composed of carpometacarpus and
phalanges
The phalanges (: phalanx ) are digit (anatomy), digital bones in the hands and foot, feet of most vertebrates. In primates, the Thumb, thumbs and Hallux, big toes have two phalanges while the other Digit (anatomy), digits have three phalanges. ...
); these are the longest and narrowest of the remiges (particularly those attached to the phalanges), and they can be individually rotated. These feathers are especially important for flapping flight, as they are the principal source of
thrust
Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that ...
, moving the bird forward through the air. The mechanical properties of primaries are important in supporting flight. Most thrust is generated on the downstroke of flapping flight. However, on the upstroke (when the bird often draws its wing in close to its body), the primaries are separated and rotated, reducing air resistance while still helping to provide some thrust. The flexibility of the remiges on the wingtips of large soaring birds also allows for the spreading of those feathers, which helps to reduce the creation of wingtip
vortices, thereby reducing
drag. The barbules on these feathers, friction barbules, are specialized with large lobular barbicels that help grip and prevent slippage of overlying feathers and are present in most of the flying birds.
Species vary somewhat in the number of primaries they possess. The number in non-passerines generally varies between nine and 11,
but
grebe
Grebes () are aquatic diving birds in the order (biology), order Podicipediformes (). Grebes are widely distributed freshwater birds, with some species also found in sea, marine habitats during Bird migration, migration and winter. Most grebes f ...
s,
stork
Storks are large, long-legged, long-necked wading birds with long, stout bills. They belong to the family Ciconiidae, and make up the order Ciconiiformes . Ciconiiformes previously included a number of other families, such as herons and ibise ...
s and
flamingos have 12,
and
ostriches have 16.
While most modern
passerine
A passerine () is any bird of the order Passeriformes (; from Latin 'sparrow' and '-shaped') which includes more than half of all bird species. Sometimes known as perching birds, passerines generally have an anisodactyl arrangement of their ...
s have ten primaries,
some have only nine. Those with nine are missing the most distal primary (sometimes called the remicle) which is typically very small and sometimes rudimentary in passerines.
The outermost primaries—those connected to the phalanges—are sometimes known as pinions.
Secondaries

Secondaries are connected to the
ulna
The ulna or ulnar bone (: ulnae or ulnas) is a long bone in the forearm stretching from the elbow to the wrist. It is on the same side of the forearm as the little finger, running parallel to the Radius (bone), radius, the forearm's other long ...
. In some species, the ligaments that bind these remiges to the bone connect to small, rounded projections, known as
quill knobs, on the ulna; in other species, no such knobs exist. Secondary feathers remain close together in flight (they cannot be individually separated like the primaries can) and help to provide lift by creating the airfoil shape of the bird's wing. Secondaries tend to be shorter and broader than primaries, with blunter ends (see illustration). They vary in number from six in
hummingbird
Hummingbirds are birds native to the Americas and comprise the Family (biology), biological family Trochilidae. With approximately 366 species and 113 genus, genera, they occur from Alaska to Tierra del Fuego, but most species are found in Cen ...
s to as many as 40 in some species of
albatross
Albatrosses, of the biological family Diomedeidae, are large seabirds related to the procellariids, storm petrels, and diving petrels in the order Procellariiformes (the tubenoses). They range widely in the Southern Ocean and the North Paci ...
.
In general, larger and longer-winged species have a larger number of secondaries.
Birds in more than 40 non-passerine families seem to be missing the fifth secondary feather on each wing, a state known as diastataxis (those that do have the fifth secondary are said to be eutaxic). In these birds, the fifth set of secondary
covert feathers does not cover any remiges, possibly due to a twisting of the feather papillae during
embryo
An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
nic development.
Loon
Loons (North American English) or divers (British English, British / Irish English) are a group of aquatic birds found in much of North America and northern Eurasia. All living species of loons are members of the genus ''Gavia'', family (biolog ...
s, grebes,
pelican
Pelicans (genus ''Pelecanus'') are a genus of large water birds that make up the family Pelecanidae. They are characterized by a long beak and a large throat pouch used for catching prey and draining water from the scooped-up contents before ...
s,
hawks and
eagle
Eagle is the common name for the golden eagle, bald eagle, and other birds of prey in the family of the Accipitridae. Eagles belong to several groups of Genus, genera, some of which are closely related. True eagles comprise the genus ''Aquila ( ...
s,
cranes,
sandpipers,
gull
Gulls, or colloquially seagulls, are seabirds of the subfamily Larinae. They are most closely related to terns and skimmers, distantly related to auks, and even more distantly related to waders. Until the 21st century, most gulls were placed ...
s, parrots, and owls are among the families missing this feather.
Tertials
Tertials arise in the brachial region and are not considered true remiges as they are not supported by attachment to the corresponding bone, in this case the humerus. These elongated "true" tertials act as a protective cover for all or part of the folded primaries and secondaries, and do not qualify as flight feathers as such.
However, many authorities use the term tertials to refer to the shorter, more symmetrical innermost secondaries of passerines (arising from the
olecranon
The olecranon (, ), is a large, thick, curved bony process on the proximal, posterior end of the ulna. It forms the protruding part of the elbow and is opposite to the cubital fossa or elbow pit (trochlear notch). The olecranon serves as a lever ...
and performing the same function as true tertials) in an effort to distinguish them from other secondaries. The term
humeral is sometimes used for birds such as the albatrosses and pelicans that have a long humerus.
Tectrices
The calami of the flight feathers are protected by a layer of non-flight feathers called ''covert'' feathers or ''
tectrices'' (singular ''tectrix''), at least one layer of them both above and beneath the flight feathers of the wings as well as above and below the rectrices of the tail.
These feathers may vary widely in size – in fact, the upper tail tectrices of the male
peafowl
Peafowl is a common name for two bird species of the genus '' Pavo'' and one species of the closely related genus '' Afropavo'' within the tribe Pavonini of the family Phasianidae (the pheasants and their allies). Male peafowl are referred t ...
, rather than its rectrices, are what constitute its elaborate and colorful "train".
Emargination
The outermost primaries of large soaring birds, particularly raptors, often show a pronounced narrowing at some variable distance along the feather edges. These narrowings are called either notches or emarginations depending on the degree of their slope.
An emargination is a gradual change, and can be found on either side of the feather. A notch is an abrupt change, and is only found on the wider trailing edge of the remex. (Both are visible on the primary in the photo showing the feathers; they can be found about halfway along both sides of the left hand feather—a shallow notch on the left, and a gradual emargination on the right.) The presence of notches and emarginations creates gaps at the wingtip; air is forced through these gaps, increasing the generation of lift.
Alula

Feathers on the
alula or bastard wing are not generally considered to be flight feathers in the strict sense; though they are asymmetrical, they lack the length and stiffness of most true flight feathers. However, alula feathers are definitely an aid to slow flight. These feathers—which are attached to the bird's "thumb" and normally lie flush against the
anterior
Standard anatomical terms of location are used to describe unambiguously the anatomy of humans and other animals. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position pro ...
edge of the wing—function in the same way as the
slats on an airplane wing, allowing the wing to achieve a higher than normal
angle of attack – and thus
lift – without resulting in a
stall. By manipulating its thumb to create a gap between the alula and the rest of the wing, a bird can avoid stalling when flying at low speeds or landing.
Delayed development in hoatzins
The development of the remiges (and alulae) of nestling
hoatzins is much delayed compared to the development of these feathers in other young birds, presumably because young hoatzins are equipped with
claw
A claw is a curved, pointed appendage found at the end of a toe or finger in most amniotes (mammals, reptiles, birds). Some invertebrates such as beetles and spiders have somewhat similar fine, hooked structures at the end of the leg or Arthro ...
s on their first two
digits. They use these small rounded hooks to grasp branches when clambering about in trees, and feathering on these digits would presumably interfere with that functionality. Most youngsters shed their claws sometime between their 70th and 100th day of life, but some retain them— though
callused-over and unusable— into adulthood.
Rectrices
Rectrices (singular rectrix) from the Latin word for "helmsman", help the bird to brake and steer in flight. These feathers lie in a single horizontal row on the rear margin of the anatomic tail. Only the central pair are attached (via
ligament
A ligament is a type of fibrous connective tissue in the body that connects bones to other bones. It also connects flight feathers to bones, in dinosaurs and birds. All 30,000 species of amniotes (land animals with internal bones) have liga ...
s) to the tail bones; the remaining rectrices are embedded into the
rectricial bulbs, complex structures of fat and muscle that surround those bones. Rectrices are always paired, with a vast majority of species having six pairs. They are absent in grebes and some
ratites, and greatly reduced in size in penguins.
Many
grouse
Grouse are a group of birds from the order (biology), order Galliformes, in the family (biology), family Phasianidae. Grouse are presently assigned to the Tribe (biology), tribe Tetraonini (formerly the subfamily Tetraoninae and the family Tetr ...
species have more than 12 rectrices. In some species (including
ruffed grouse,
hazel grouse and
common snipe), the number varies among individuals.
Domestic pigeons have a highly variable number as a result of changes brought about over centuries of selective breeding.
Numbering conventions
In order to make the discussion of such topics as
moult processes or
body structure easier,
ornithologist
Ornithology, from Ancient Greek ὄρνις (''órnis''), meaning "bird", and -logy from λόγος (''lógos''), meaning "study", is a branch of zoology dedicated to the study of birds. Several aspects of ornithology differ from related discip ...
s assign a number to each flight feather. By convention, the numbers assigned to primary feathers always start with the letter P ''(P1, P2, P3, etc.)'', those of secondaries with the letter S, those of tertials with T and those of rectrices with R.
Most authorities number the primaries descendantly, starting from the innermost primary (the one closest to the secondaries) and working outwards; others number them ascendantly, from the most distal primary inwards.
There are some advantages to each method. Descendant numbering follows the normal sequence of most birds' primary moult. In the event that a species is missing the small distal tenth primary, as some passerines are, its lack does not impact the numbering of the remaining primaries. Ascendant numbering, on the other hand, allows for uniformity in the numbering of non-passerine primaries, as they almost invariably have four attached to the manus regardless of how many primaries they have overall.
This method is particularly useful for indicating wing formulae, as the outermost primary is the one with which the measurements begin.
Secondaries are always numbered ascendantly, starting with the outermost secondary (the one closest to the primaries) and working inwards.
Tertials are also numbered ascendantly, but in this case, the numbers continue on consecutively from that given to the last secondary (e.g. ... S5, S6, T7, T8, ... etc.).
Rectrices are always numbered from the centermost pair outwards in both directions.
Specialized flight feathers
The flight feathers of some species provide additional functionality. In some species, for example, either remiges or rectrices make a sound during flight. These sounds are most often associated with courtship or territorial displays. The outer primaries of male
broad-tailed hummingbirds produce a distinctive high-pitched trill, both in direct flight and in power-dives during courtship displays; this trill is diminished when the outer primaries are worn, and absent when those feathers have been moulted. During the
northern lapwing's zigzagging display flight, the bird's outer primaries produce a humming sound. The outer primaries of the male
American woodcock are shorter and slightly narrower than those of the female, and are likely the source of the whistling and twittering sounds made during his courtship display flights. Male
club-winged manakins use modified secondaries to make a clear trilling courtship call. A curve-tipped secondary on each wing is dragged against an adjacent ridged secondary at high speeds (as many as 110 times per second—slightly faster than a hummingbird's wingbeat) to create a
stridulation much like that produced by some insects. Both
Wilson's and
common snipe have modified outer tail feathers which make noise when they are spread during the birds' roller coaster display flights; as the bird dives, wind flows through the modified feathers and creates a series of rising and falling notes, which is known as "winnowing". Differences between the sounds produced by these two former conspecific subspecies—and the fact that the outer two pairs of rectrices in Wilson's snipe are modified, while only the single outermost pair are modified in common snipe—were among the characteristics used to justify their splitting into two distinct and separate species.

Flight feathers are also used by some species in visual displays. Male
standard-winged and
pennant-winged nightjars have modified P2 primaries (using the descendant numbering scheme explained above) which are displayed during their courtship rituals. In the standard-winged nightjar, this modified primary consists of an extremely long shaft with a small "pennant" (actually a large web of barbules) at the tip. In the pennant-winged nightjar, the P2 primary is an extremely long (but otherwise normal) feather, while P3, P4 and P5 are successively shorter; the overall effect is a broadly forked wingtip with a very long plume beyond the lower half of the fork.
Males of many species, ranging from the widely introduced
ring-necked pheasant to Africa's many
whydahs, have one or more elongated pairs of rectrices, which play an often-critical role in their courtship rituals. The outermost pair of rectrices in male
lyrebirds are extremely long and strongly curved at the ends. These plumes are raised up over the bird's head (along with a fine spray of modified uppertail coverts) during his extraordinary display. Rectrix modification reaches its pinnacle among the
birds of paradise, which display an assortment of often bizarrely modified feathers, ranging from the extremely long plumes of the
ribbon-tailed astrapia (nearly three times the length of the bird itself) to the dramatically coiled twin plumes of the
magnificent bird-of-paradise.
Owls have remiges which are serrated rather than smooth on the leading edge. This adaptation disrupts the flow of air over the wings, eliminating the noise that airflow over a smooth surface normally creates, and allowing the birds to fly and hunt silently.
The rectrices of
woodpeckers are proportionately short and very stiff, allowing them to better brace themselves against tree trunks while feeding. This adaptation is also found, though to a lesser extent, in some other species that feed along tree trunks, including
treecreepers and
woodcreepers.
Scientists have not yet determined the function of all flight feather modifications. Male swallows in the genera ''
Psalidoprocne
The saw-wings, ''Psalidoprocne'', is a small genus of passerine birds in the swallow family. The common name of this group is derived from the rough outer edge of the outer primary feather on the wing, which is rough due to recurved barbs. The f ...
'' and ''
Stelgidopteryx'' have tiny recurved hooks on the leading edges of their outer primaries, but the function of these hooks is not yet known; some authorities suggest they may produce a sound during territorial or courtship displays.
Vestigiality in flightless birds

Over time, a small number of bird species have lost their ability to fly. Some of these, such as the
steamer ducks, show no appreciable changes in their flight feathers. Some, such as the
Titicaca grebe and a number of the flightless rails, have a reduced number of primaries.
The remiges of ratites are soft and downy; they lack the interlocking hooks and barbules that help to stiffen the flight feathers of other birds. In addition, the
emu
The emu (; ''Dromaius novaehollandiae'') is a species of flightless bird endemism, endemic to Australia, where it is the Tallest extant birds, tallest native bird. It is the only extant taxon, extant member of the genus ''Dromaius'' and the ...
's remiges are proportionately much reduced in size, while those of the
cassowaries are reduced both in number and structure, consisting merely of five to six bare quills. Most ratites have completely lost their rectrices; only the ostrich still has them.
Penguins have lost their differentiated flight feathers. As adults, their wings and tail are covered with the same small, stiff, slightly curved feathers as are found on the rest of their bodies.
The ground-dwelling
kākāpō, which is the world's only flightless parrot, has remiges which are shorter, rounder and more symmetrically vaned than those of parrots capable of flight; these flight feathers also contain fewer interlocking barbules near their tips.
Moult

Once they have finished growing, feathers are essentially dead structures. Over time, they become worn and abraded, and need to be replaced. This replacement process is known as
moult (molt in the United States). The loss of wing and tail feathers can affect a bird's ability to fly (sometimes dramatically) and in certain
families can impair the ability to feed or perform
courtship display
A courtship display is a set of display behaviors in which an animal, usually a male, attempts to attract a mate; the mate exercises choice, so sexual selection acts on the display. These behaviors often include ritualized movement ("dances"), ...
s. The timing and progression of flight feather moult therefore varies among families.
For most birds, moult begins at a certain specific point, called a focus (plural foci), on the wing or tail and proceeds in a sequential manner in one or both directions from there. For example, most passerines have a focus between the innermost primary (P1, using the numbering scheme explained above) and outermost secondary (S1), and a focus point in the middle of the center pair of rectrices. As passerine moult begins, the two feathers closest to the focus are the first to drop. When replacement feathers reach roughly half of their eventual length, the next feathers in line (P2 and S2 on the wing, and both R2s on the tail) are dropped. This pattern of drop and replacement continues until moult reaches either end of the wing or tail. The speed of the moult can vary somewhat within a species. Some passerines that breed in the
Arctic
The Arctic (; . ) is the polar regions of Earth, polar region of Earth that surrounds the North Pole, lying within the Arctic Circle. The Arctic region, from the IERS Reference Meridian travelling east, consists of parts of northern Norway ( ...
, for example, drop many more flight feathers at once (sometimes becoming briefly flightless) in order to complete their entire wing moult prior to
migrating south, while those same species breeding at lower
latitude
In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
s undergo a more protracted moult.

In many species, there is more than one focus along the wing. Here, moult begins at all foci simultaneously, but generally proceeds only in one direction. Most grouse, for example, have two wing foci: one at the wingtip, the other between feathers P1 and S1. In this case, moult proceeds descendantly from both foci. Many large, long-winged birds have multiple wing foci.
Birds that are heavily "wing-loaded"—that is, heavy-bodied birds with relatively short wings—have great difficulty flying with the loss of even a few flight feathers. A protracted moult like the one described above would leave them vulnerable to
predator
Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common List of feeding behaviours, feeding behaviours that includes parasitism and micropredation ...
s for a sizeable portion of the year. Instead, these birds lose all their flight feathers at once. This leaves them completely flightless for a period of three to four weeks, but means their overall period of vulnerability is significantly shorter than it would otherwise be. Eleven families of birds, including
loon
Loons (North American English) or divers (British English, British / Irish English) are a group of aquatic birds found in much of North America and northern Eurasia. All living species of loons are members of the genus ''Gavia'', family (biolog ...
s, grebes and most
waterfowl, have this moult strategy.
The cuckoos show what is called saltatory or transilient wing moults. In simple forms, this involves the moulting and replacement of odd-numbered primaries and then the even-numbered primaries. There are however complex variations with differences based on life history.
Arboreal
woodpeckers, which depend on their tails—particularly the strong central pair of rectrices—for support while they feed, have a unique tail moult. Rather than moulting their central tail feathers first, as most birds do, they retain these feathers until last. Instead, the second pair of rectrices (both R2 feathers) are the first to drop. (In some species in the genera ''Celeus'' and ''Dendropicos'', the third pair is the first dropped.) The pattern of feather drop and replacement proceeds as described for passerines (above) until all other rectrices have been replaced; only then are the central tail rectrices moulted. This provides some protection to the growing feathers, since they're always covered by at least one existing feather, and also ensures that the bird's newly strengthened tail is best able to cope with the loss of the crucial central rectrices. Ground-feeding woodpeckers, such as the
wrynecks, do not have this modified moult strategy; in fact, wrynecks moult their outer tail feathers first, with moult proceeding
proximally from there.
Age differences in flight feathers
There are often substantial differences between the remiges and rectrices of adults and juveniles of the same species. Because all juvenile feathers are grown at once—a tremendous energy burden to the developing bird—they are softer and of poorer quality than the equivalent feathers of adults, which are moulted over a longer period of time (as long as several years in some cases).
As a result, they wear more quickly.
As feathers grow at variable rates, these variations lead to visible dark and light bands in the fully formed feather. These ''growth bars'' and their widths have been used to determine the daily nutritional status of birds. Each light and dark bar correspond to around 24 hours and the use of this technique has been called ''ptilochronology'' (analogous to
dendrochronology
Dendrochronology (or tree-ring dating) is the scientific method of chronological dating, dating tree rings (also called growth rings) to the exact year they were formed in a tree. As well as dating them, this can give data for dendroclimatology, ...
).
In general, juveniles have feathers which are narrower and more sharply pointed at the tip.
This can be particularly visible when the bird is in flight, especially in the case of raptors. The trailing edge of the wing of a juvenile bird can appear almost serrated, due to the feathers' sharp tips, while that of an older bird will be straighter-edged.
The flight feathers of a juvenile bird will also be uniform in length, since they all grew at the same time. Those of adults will be of various lengths and levels of wear, since each is moulted at a different time.
The flight feathers of adults and juveniles can differ considerably in length, particularly among the raptors. Juveniles tend to have slightly longer rectrices and shorter, broader wings (with shorter outer primaries, and longer inner primaries and secondaries) than do adults of the same species.
However, there are many exceptions. In longer-tailed species, such as
swallow-tailed kite,
secretary bird and
European honey buzzard, for example, juveniles have shorter rectrices than adults do. Juveniles of some ''Buteo'' buzzards have narrower wings than adults do, while those of large juvenile falcons are longer. It is theorized that the differences help young birds compensate for their inexperience, weaker flight muscles and poorer flying ability.
Wing formula

A wing formula describes the shape of distal end of a bird's wing in a
mathematical
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
way. It can be used to help distinguish between species with similar plumages, and thus is particularly useful for those who
ring (band) birds.
To determine a bird's wing formula, the distance between the tip of the most distal primary and the tip of its greater covert (the longest of the feathers that cover and protect the shaft of that primary) is measured in millimeters. In some cases, this results in a positive number (e.g., the primary extends beyond its greater covert), while in other cases it is a negative number (e.g. the primary is completely covered by the greater covert, as happens in some passerine species). Next, the longest primary feather is identified, and the differences between the length of that primary and that of all remaining primaries and of the longest secondary are also measured, again in millimeters. If any primary shows a notch or emargination, this is noted, and the distance between the feather's tip and any notch is measured, as is the depth of the notch. All distance measurements are made with the bird's wing closed, so as to maintain the relative positions of the feathers.
While there can be considerable variation across members of a species—and while the results are obviously impacted by the effects of moult and feather regeneration—even very closely related species show clear differences in their wing formulas.
Primary extension

The distance that a bird's longest primaries extend beyond its longest secondaries (or tertials) when its wings are folded is referred to as the primary extension or primary projection.
As with wing formulae, this measurement is useful for distinguishing between similarly plumaged birds; however, unlike wing formulae, it is not necessary to have the bird in-hand to make the measurement. Rather, this is a useful ''relative'' measurement—some species have long primary extensions, while others have shorter ones. Among the ''
Empidonax''
flycatchers of the Americas, for example, the
dusky flycatcher has a much shorter primary extension than does the very similarly plumaged
Hammond's flycatcher.
Europe's
common skylark has a long primary projection, while that of the near-lookalike
Oriental skylark is very short.
As a general rule, species which are long-distance migrants will have longer primary projection than similar species which do not migrate or migrate shorter distances.
See also
*
Bird anatomy
*
Bird flight
Bird flight is the primary mode of animal locomotion, locomotion used by most bird species in which birds take off and flight, fly. Flight assists birds with feeding, Sexual reproduction, breeding, avoiding predation, predators, and Bird migrati ...
*
Drumming (snipe)
Drumming (also called bleating or winnowing) is a sound produced by snipe as part of their courtship display flights.Van Casteren, A, et al. “Sonation in the Male Common Snipe (Capella Gallinago Gallinago L.) Is Achieved by a Flag-like Flutterin ...
*
Pinioning
*
Plumage
Plumage () is a layer of feathers that covers a bird and the pattern, colour, and arrangement of those feathers. The pattern and colours of plumage differ between species and subspecies and may vary with age classes. Within species, there can b ...
*
Delayed feathering in chickens
Notes
References
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
Wing Feathers—US Fish and Wildlife Service document Contains excellent photographic examples of emargination and notching in raptor remiges.
Video of feeding Magellanic woodpecker (''Campephilus magellanicus'')Shows use of rectrices for bracing.
Video of singing male superb lyrebird (''Menuta novaehollandiae'')Shows long modified rectrices which are used in display (though the video doesn't show full display).
Video of male club-winged manakin (''Machaeropterus deliciosus'')Shows use of secondary remiges to produce sound.
Cornell Laboratory of Ornithology's American woodcock ''(Scolopax minor)'' recordings#94216 has a good example of the sounds made by remiges during courtship display flight, starting at about 2:32.
*
{{Featured article
Birds
Feathers
Bird flight