
The smoothed octagon is a region in the plane found by
Karl Reinhardt in 1934 and conjectured by him to have the ''lowest'' maximum
packing density of the
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* Planes (gen ...
of all
centrally symmetric
In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invari ...
convex shapes. It was also independently discovered by
Kurt Mahler in 1947.
It is constructed by replacing the corners of a
regular octagon
In geometry, an octagon (from the Greek ὀκτάγωνον ''oktágōnon'', "eight angles") is an eight-sided polygon or 8-gon.
A '' regular octagon'' has Schläfli symbol and can also be constructed as a quasiregular truncated square, t, whi ...
with a section of a
hyperbola
In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
that is tangent to the two sides adjacent to the corner and asymptotic to the sides adjacent to these.
Construction

The shape of the smoothed octagon can be derived from its packings, which place octagons at the points of a triangular lattice. The requirement that these packings have the same density no matter how the lattice and smoothed octagon are rotated relative to each other, with shapes that remain in contact with each neighboring shape, can be used to determine the shape of the corners. One of the figures shows three octagons that rotate while the area of the triangle formed by their centres remains constant, keeping them packed together as closely as possible. For regular octagons, the red and blue shapes would overlap, so to enable the rotation to proceed the corners are clipped to a point that lies halfway between their centres, generating the required curve, which turns out to be a hyperbola.

The hyperbola is constructed tangent to two sides of the octagon, and asymptotic to the two adjacent to these. The following details apply to a regular octagon of
circumradius
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
with its centre at the point
and one vertex at the point
. For two constants
and
, the hyperbola is given by the equation
or the equivalent parameterization (for the right-hand branch only)
for the portion of the hyperbola that forms the corner, given by the range of parameter values