Reidemeister Moves
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
area of
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, a Reidemeister move is any of three local moves on a link diagram. and, independently, , demonstrated that two knot diagrams belonging to the same knot, up to planar isotopy, can be related by a sequence of the three Reidemeister moves. Each move operates on a small region of the diagram and is one of three types: No other part of the diagram is involved in the picture of a move, and a planar isotopy may distort the picture. The numbering for the types of moves corresponds to how many strands are involved, e.g. a type II move operates on two strands of the diagram. One important context in which the Reidemeister moves appear is in defining knot invariants. By demonstrating a property of a knot diagram which is not changed when we apply any of the Reidemeister moves, an invariant is defined. Many important invariants can be defined in this way, including the
Jones polynomial In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polyno ...
. The type I move is the only move that affects the writhe of the diagram. The type III move is the only one which does not change the crossing number of the diagram. In applications such as the Kirby calculus, in which the desired
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
of knot diagrams is not a knot but a framed link, one must replace the type I move with a "modified type I" (type I') move composed of two type I moves of opposite sense. The type I' move affects neither the framing of the link nor the writhe of the overall knot diagram. showed that two knot diagrams for the same knot are related by using only type II and III moves if and only if they have the same writhe and
winding number In mathematics, the winding number or winding index of a closed curve in the plane (mathematics), plane around a given point (mathematics), point is an integer representing the total number of times that the curve travels counterclockwise aroun ...
. Furthermore, combined work of , , and shows that for every knot type there are a pair of knot diagrams so that every sequence of Reidemeister moves taking one to the other must use all three types of moves. Alexander Coward demonstrated that for link diagrams representing equivalent links, there is a sequence of moves ordered by type: first type I moves, then type II moves, type III, and then type II. The moves before the type III moves increase crossing number while those after decrease crossing number. proved the existence of an exponential tower
upper bound In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is every element of . Dually, a lower bound or minorant of is defined to be an element of that is less ...
(depending on crossing number) on the number of Reidemeister moves required to pass between two diagrams of the same link. In detail, let n be the sum of the crossing numbers of the two diagrams, then the upper bound is 2^ where the height of the tower of 2s (with a single n at the top) is 10^. proved the existence of a polynomial upper bound (depending on crossing number) on the number of Reidemeister moves required to change a diagram of the unknot to the standard unknot. In detail, for any such diagram with c crossings, the upper bound is (236 c)^. proved there is also an upper bound, depending on crossing number, on the number of Reidemeister moves required to split a link.


References


Sources

* * * * * * * * * * * {{Knot theory, state=collapsed Knot operations