
In
telecommunications and
radar, a reflective array antenna is a class of
directive antenna
Antenna ( antennas or antennae) may refer to:
Science and engineering
* Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves
* Antennae Galaxies, the name of two collid ...
s in which multiple
driven elements are mounted in front of a flat surface designed to reflect the
radio waves in a desired direction. They are a type of
array antenna
An antenna array (or array antenna) is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas (called ''elements'') are usually connected to a single receiver ...
. They are often used in the
VHF
Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter.
Frequencies immediately below VHF ...
and
UHF
Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter (on ...
frequency bands. VHF examples are generally large and resemble a highway
billboard
A billboard (also called a hoarding in the UK and many other parts of the world) is a large outdoor advertising structure (a billing board), typically found in high-traffic areas such as alongside busy roads. Billboards present large advertise ...
, so they are sometimes called billboard antennas. Other names are bedspring array and bowtie array depending on the type of elements making up the antenna. The
curtain array
Curtain arrays are a class of large multielement directional radio transmitting wire antennas, used in the shortwave radio bands. They are a type of reflective array antenna, consisting of multiple wire dipole antennas, suspended in a vert ...
is a larger version used by
shortwave
Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (100 to 10 me ...
radio broadcasting stations.
Reflective array antennas usually have a number of identical driven elements, fed
in phase, in front of a flat, electrically large
reflecting surface to produce a
unidirectional beam of radio waves, increasing
antenna gain
In electromagnetics, an antenna's gain is a key performance parameter which combines the antenna's directivity and radiation efficiency. The term ''power gain'' has been deprecated by IEEE. In a transmitting antenna, the gain describes how ...
and reducing
radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:
* ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
in unwanted directions. The larger the number of elements used, the higher the gain; the narrower the beam is and the smaller the
sidelobes are. The individual elements are most commonly
half wave dipole
In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole wi ...
s, although they sometimes contain
parasitic elements as well as driven elements. The reflector may be a metal sheet or more commonly a wire screen. A metal screen reflects radio waves as well as a solid metal sheet as long as the holes in the screen are smaller than about one-tenth of a wavelength, so screens are often used to reduce weight and wind loads on the antenna. They usually consist of a grill of parallel wires or rods, oriented parallel to the axis of the dipole elements.
The driven elements are fed by a network of
transmission lines, which divide the power from the RF source equally between the elements. This often has the circuit geometry of a tree structure.
Basic concepts
Radio signals
When a radio signal passes a conductor, it
induces an electrical current in it. Since the radio signal fills space, and the conductor has a finite size, the induced currents add up or cancel out as they move along the conductor. A basic goal of antenna design is to make the currents add up to a maximum at the point where the energy is tapped off. To do this, the antenna elements are sized in relation to the wavelength of the radio signal, with the aim of setting up
standing wave
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
s of current that are maximized at the feed point.
This means that an antenna designed to receive a particular wavelength has a natural size. To improve reception, one cannot simply make the antenna larger; this will improve the amount of signal intercepted by the antenna, which is largely a function of area, but will lower the efficiency of the reception (at a given wavelength). Thus, in order to improve reception, antenna designers often use multiple elements, combining them together so their signals add up. These are known as ''
antenna arrays''.
Array phasing
In order for the signals to add together, they need to arrive
in-phase. Consider two
dipole antenna
In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole w ...
s placed in a line end-to-end, or ''collinear''. If the resulting array is pointed directly at the source signal, both dipoles will see the same instantaneous signal, and thus their reception will be in-phase. However, if one were to rotate the antenna so it was at an angle to the signal, the extra path from the signal to the more distant dipole means it receives the signal slightly out of phase. When the two signals are then added up, they no longer strictly reinforce each other, and the output drops. This makes the array more sensitive horizontally, while stacking the dipoles in parallel narrows the pattern vertically. This allows the designer to tailor the reception pattern, and thus the
gain
Gain or GAIN may refer to:
Science and technology
* Gain (electronics), an electronics and signal processing term
* Antenna gain
* Gain (laser), the amplification involved in laser emission
* Gain (projection screens)
* Information gain in de ...
, by moving the elements about.
If the antenna is properly aligned with the signal, at any given instant in time, all of the elements in an array will receive the same signal and be in-phase. However, the output from each element has to be gathered up at a single feed point, and as the signals travel across the antenna to that point, their phase is changing. In a two-element array this is not a problem because the feed point can be placed between them; any phase shift taking place in the transmission lines is equal for both elements. However, if one extends this to a four-element array, this approach no longer works, as the signal from the outer pair has to travel further and will thus be at a different phase than the inner pair when it reaches the center. To ensure that they all arrive with the same phase, it is common to see additional transmission wire inserted in the signal path, or for the transmission line to be crossed over to reverse the phase if the difference is greater than a wavelength.
Reflectors
The gain can be further improved through the addition of a ''reflector''. Generally any conductor in a flat sheet will act in a mirror-like fashion for radio signals, but this also holds true for non-continuous surfaces as long as the gaps between the conductors are less than about of the target wavelength. This means that wire mesh or even parallel wires or metal bars can be used, which is especially useful both for reducing the total amount of material as well as reducing wind loads.
Due to the change in signal propagation direction on reflection, the signal undergoes a reversal of phase. In order for the reflector to add to the output signal, it has to reach the elements in-phase. Generally this would require the reflector to be placed at of a wavelength behind the elements, and this can be seen in many common reflector arrays like
television antennas. However, there are a number of factors that can change this distance, and actual reflector positioning varies.
Reflectors also have the advantage of reducing the signal received from the back of the antenna. Signals received from the rear and re-broadcast from the reflector have not undergone a change of phase, and do not add to the signal from the front. This greatly improves the
front-to-back ratio of the antenna, making it more directional. This can be useful when a more directional signal is desired, or unwanted signals are present. There are cases when this is not desirable, and although reflectors are commonly seen in array antennas, they are not universal. For instance, while UHF television antennas often use an array of
bowtie antenna
In radio systems, a biconical antenna is a broad-bandwidth antenna made of two roughly conical conductive objects, nearly touching at their points.Zhuohui Zhang,''Analysis and design of a broadband antenna for software defined radio'', ProQuest, 2 ...
s with a reflector, a bowtie array without a reflector is a relatively common design in the
microwave region.
Gain limits
As more elements are added to an array, the
beamwidth
The beam diameter or beam width of an electromagnetic beam is the diameter along any specified line that is perpendicular to the beam axis and intersects it. Since beams typically do not have sharp edges, the diameter can be defined in many differ ...
of the antenna's main lobe decreases, leading to an increase in gain. In theory there is no limit to this process. However, as the number of elements increases, the complexity of the required feed network that keeps the signals in-phase increases. Ultimately, the rising inherent losses in the feed network become greater than the additional gain achieved with more elements, limiting the maximum gain that can be achieved.

The gain of practical array antennas is limited to about 25–30 dB. Two half wave elements spaced a half wave apart and a quarter wave from a reflecting screen have been used as a standard gain antenna with about 9.8 dBi at its design frequency. Common 4-bay television antennas have gains around 10 to 12 dB, and 8-bay designs might increase this to 12 to 16 dB. The 32-element SCR-270 had a gain around 19.8 dB. Some very large reflective arrays have been constructed, notably the Soviet
Duga radars which are hundreds of meters across and contain hundreds of elements. ''Active'' array antennas, in which groups of elements are driven by separate RF amplifiers, can have much higher gain, but are prohibitively expensive.
Since the 1980s, versions for use at
microwave frequencies have been made with
patch antenna elements mounted in front of a metal surface.
Radiation pattern and beam steering
When driven in phase, the
radiation pattern of the reflective array is a single
main lobe perpendicular to the plane of the antenna, plus several
sidelobes at equal angles to either side. The more elements used, the narrower the main lobe and the less power is radiated in the sidelobes.
The main lobe of the antenna can be steered electronically within a limited angle by
phase shifting the drive signals applied to the individual elements. Each antenna element is fed through a
phase shifter
A phase shift module is a microwave network module which provides a controllable phase shift of the RF signal. Phase shifters are used in phased arrays.
Classification
Active versus passive
Active phase shifters provide gain, while passive ...
which can be controlled digitally, delaying each signal by a successive amount. This causes the wavefronts created by the superposition of the individual elements to be at an angle to the plane of the antenna. Antennas that use this technique are called
phased array
In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving th ...
s and often used in modern radar systems.
Another option for steering the beam is mounting the entire antenna structure on a pivoting platform and rotating it mechanically.
See also
*
Mars Cube One (2018 spacecraft design with Reflective array antenna)
References
{{Antenna Types
Radio frequency antenna types
Antennas (radio)