HOME

TheInfoList



OR:

A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle,
sulfur cycle The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element ( CHNOPS), being a const ...
,
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
, water cycle, phosphorus cycle, oxygen cycle, among others that continually recycle along with other mineral nutrients into productive ecological nutrition.


Outline

The nutrient cycle is nature's recycling system. All forms of recycling have feedback loops that use energy in the process of putting material resources back into use. Recycling in ecology is regulated to a large extent during the process of decomposition. Ecosystems employ biodiversity in the food webs that recycle natural materials, such as mineral nutrients, which includes water. Recycling in natural systems is one of the many ecosystem services that sustain and contribute to the well-being of human societies. There is much overlap between the terms for the
biogeochemical cycle A biogeochemical cycle (or more generally a cycle of matter) is the pathway by which a chemical substance cycles (is turned over or moves through) the biotic and the abiotic compartments of Earth. The biotic compartment is the biosphere and the ...
and nutrient cycle. Most textbooks integrate the two and seem to treat them as synonymous terms. However, the terms often appear independently. Nutrient cycle is more often used in direct reference to the idea of an intra-system cycle, where an ecosystem functions as a unit. From a practical point, it does not make sense to assess a terrestrial ecosystem by considering the full column of air above it as well as the great depths of Earth below it. While an ecosystem often has no clear boundary, as a working model it is practical to consider the functional community where the bulk of matter and energy transfer occurs. Nutrient cycling occurs in ecosystems that participate in the "larger biogeochemical cycles of the earth through a system of inputs and outputs."


Complete and closed loop

Ecosystems are capable of complete recycling. Complete recycling means that 100% of the waste material can be reconstituted indefinitely. This idea was captured by Howard T. Odum when he penned that "it is thoroughly demonstrated by ecological systems and geological systems that all the chemical elements and many organic substances can be accumulated by living systems from background crustal or oceanic concentrations without limit as to concentration so long as there is available solar or another source of potential energy" In 1979 Nicholas Georgescu-Roegen proposed the fourth law of entropy stating that complete recycling is impossible. Despite Georgescu-Roegen's extensive intellectual contributions to the science of ecological economics, the fourth law has been rejected in line with observations of ecological recycling. However, some authors state that complete recycling is impossible for technological waste. Ecosystems execute closed loop recycling where demand for the nutrients that adds to the growth of
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bi ...
exceeds supply within that system. There are regional and spatial differences in the rates of growth and exchange of materials, where some ecosystems may be in nutrient debt (sinks) where others will have extra supply (sources). These differences relate to climate, topography, and geological history leaving behind different sources of parent material. In terms of a food web, a cycle or loop is defined as "a directed sequence of one or more links starting from, and ending at, the same species." An example of this is the microbial food web in the ocean, where "bacteria are exploited, and controlled, by protozoa, including heterotrophic microflagellates which are in turn exploited by ciliates. This grazing activity is accompanied by excretion of substances which are in turn used by the bacteria so that the system more or less operates in a closed circuit."


Ecological recycling

An example of ecological recycling occurs in the enzymatic digestion of cellulose. "Cellulose, one of the most abundant organic compounds on Earth, is the major
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wa ...
in plants where it is part of the cell walls. Cellulose-degrading enzymes participate in the natural, ''ecological recycling'' of plant material." Different ecosystems can vary in their recycling rates of litter, which creates a complex feedback on factors such as the competitive dominance of certain plant species. Different rates and patterns of ecological recycling leaves a legacy of environmental effects with implications for the future evolution of ecosystems. Ecological recycling is common in organic farming, where nutrient management is ''fundamentally different'' compared to agri-business styles of soil management. Organic farms that employ ecosystem recycling to a greater extent support more species (increased levels of biodiversity) and have a different food web structure. Organic agricultural ecosystems rely on the services of biodiversity for the recycling of nutrients through soils instead of relying on the supplementation of
synthetic fertilizers A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
. The model for ecological recycling agriculture adheres to the following principals: *Protection of biodiversity. *Use of renewable energy. *Recycling of plant nutrients. Where produce from an organic farm leaves the farm gate for the market the system becomes an open cycle and nutrients may need to be replaced through alternative methods.


Ecosystem engineers

The persistent legacy of environmental feedback that is left behind by or as an extension of the ecological actions of organisms is known as niche construction or ecosystem engineering. Many species leave an effect even after their death, such as coral skeletons or the extensive habitat modifications to a wetland by a beaver, whose components are recycled and re-used by descendants and other species living under a different selective regime through the feedback and agency of these legacy effects. Ecosystem engineers can influence nutrient cycling efficiency rates through their actions.
Earthworms An earthworm is a terrestrial invertebrate that belongs to the phylum Annelida. They exhibit a tube-within-a-tube body plan; they are externally segmented with corresponding internal segmentation; and they usually have setae on all segments. Th ...
, for example, passively and mechanically alter the nature of soil environments. Bodies of dead worms passively contribute mineral nutrients to the soil. The worms also mechanically modify the physical structure of the soil as they crawl about (
bioturbation Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a pr ...
), digest on the molds of organic matter they pull from the soil litter. These activities transport nutrients into the mineral layers of soil. Worms discard wastes that create worm castings containing undigested materials where bacteria and other decomposers gain access to the nutrients. The earthworm is employed in this process and the production of the ecosystem depends on their capability to create feedback loops in the recycling process.
Shellfish Shellfish is a colloquial and fisheries term for exoskeleton-bearing aquatic invertebrates used as food, including various species of molluscs, crustaceans, and echinoderms. Although most kinds of shellfish are harvested from saltwater envir ...
are also ecosystem engineers because they: 1) Filter suspended particles from the water column; 2) Remove excess nutrients from coastal bays through denitrification; 3) Serve as natural coastal buffers, absorbing wave energy and reducing erosion from boat wakes, sea level rise and storms; 4) Provide nursery habitat for fish that are valuable to coastal economies. Fungi contribute to nutrient cycling and nutritionally rearrange patches of ecosystem creating niches for other organisms. In that way fungi in growing dead wood allow xylophages to grow and develop and xylophages, in turn, affect dead wood, contributing to wood decomposition and nutrient cycling in the forest floor.


History

Nutrient cycling has a historical foothold in the writings of Charles Darwin in reference to the decomposition actions of earthworms. Darwin wrote about "the continued movement of the particles of earth". Even earlier, in 1749 Carl Linnaeus wrote in "the economy of nature we understand the all-wise disposition of the creator in relation to natural things, by which they are fitted to produce general ends, and reciprocal uses" in reference to the balance of nature in his book ''Oeconomia Naturae''. In this book he captured the notion of ecological recycling: "The 'reciprocal uses' are the key to the whole idea, for 'the death, and destruction of one thing should always be subservient to the restitution of another;' thus mould spurs the decay of dead plants to nourish the soil, and the earth then 'offers again to plants from its bosom, what it has received from them.'" The basic idea of a balance of nature, however, can be traced back to the Greeks: Democritus,
Epicurus Epicurus (; grc-gre, Ἐπίκουρος ; 341–270 BC) was an ancient Greek philosopher and sage who founded Epicureanism, a highly influential school of philosophy. He was born on the Greek island of Samos to Athenian parents. Influenced ...
, and their Roman disciple Lucretius. Following the Greeks, the idea of a hydrological cycle (water is considered a nutrient) was validated and quantified by Halley in 1687. Dumas and Boussingault (1844) provided a key paper that is recognized by some to be the true beginning of biogeochemistry, where they talked about the cycle of organic life in great detail. From 1836 to 1876, Jean Baptiste Boussingault demonstrated the nutritional necessity of minerals and nitrogen for plant growth and development. Prior to this time influential chemists discounted the importance of mineral nutrients in soil.
Ferdinand Cohn Ferdinand Julius Cohn (24 January 1828 – 25 June 1898) was a German biologist. He is one of the founders of modern bacteriology and microbiology. Ferdinand J. Cohn was born in the Jewish quarter of Breslau in the Kingdom of Prussia, Prussia ...
is another influential figure. "In 1872, Cohn described the 'cycle of life' as the "entire arrangement of nature" in which the dissolution of dead organic bodies provided the materials necessary for new life. The amount of material that could be molded into living beings was limited, he reasoned, so there must exist an "eternal circulation" (ewigem kreislauf) that constantly converts the same particle of matter from dead bodies into living bodies." These ideas were synthesized in the Master's research of
Sergei Vinogradskii Sergei Nikolaievich Winogradsky (or Vinohradsky; published under the name of Sergius Winogradsky or M. S. Winogradsky from Ukrainian Mykolayovych Serhiy; uk, Сергій Миколайович Виноградський; 1 September 1856 – ...
from 1881-1883.


Variations in terminology

In 1926 Vernadsky coined the term biogeochemistry as a sub-discipline of geochemistry. However, the term nutrient cycle pre-dates biogeochemistry in a pamphlet on silviculture in 1899: "These demands by no means pass over the fact that at places where sufficient quantities of humus are available and where, in case of continuous decomposition of litter, a stable, nutrient humus is present, considerable quantities of nutrients are also available from the biogenic ''nutrient cycle'' for the standing timber. In 1898 there is a reference to the nitrogen cycle in relation to nitrogen fixing microorganisms. Other uses and variations on the terminology relating to the process of nutrient cycling appear throughout history: *The term mineral cycle appears early in a 1935 in reference to the importance of minerals in
plant physiology Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. Closely related fields include plant morphology (structure of plants), plant ecology (interactions with the environment), phytochemistry (bi ...
: "...ash is probably either built up into its permanent structure, or deposited in some way as waste in the cells, and so may not be free to re-enter the ''mineral cycle''." *The term nutrient recycling appears in a 1964 paper on the food ecology of the wood stork: "While the periodic drying up and reflooding of the marshes creates special survival problems for organisms in the community, the fluctuating water levels favor rapid ''nutrient recycling'' and subsequent high rates of primary and secondary production" *The term natural cycling appears in a 1968 paper on the transportation of leaf litter and its chemical elements for consideration in fisheries management: "Fluvial transport of tree litter from drainage basins is a factor in ''natural cycling'' of chemical elements and in degradation of the land." *The term ecological recycling appears in a 1968 publication on future applications of ecology for the creation of different modules designed for living in extreme environments, such as space or under sea: "For our basic requirement of recycling vital resources, the oceans provide much more frequent ''ecological recycling'' than the land area. Fish and other organic populations have higher growth rates, vegetation has less capricious weather problems for sea harvesting." *The term bio-recycling appears in a 1976 paper on the recycling of organic carbon in oceans: "Following the actualistic assumption, then, that biological activity is responsible for the source of dissolved organic material in the oceans, but is not important for its activities after death of the organisms and subsequent chemical changes which prevent its ''bio-recycling'', we can see no major difference in the behavior of dissolved organic matter between the prebiotic and post-biotic oceans." Water is also a nutrient. In this context, some authors also refer to precipitation recycling, which "is the contribution of evaporation within a region to precipitation in that same region." These variations on the theme of nutrient cycling continue to be used and all refer to processes that are part of the global biogeochemical cycles. However, authors tend to refer to natural, organic, ecological, or bio-recycling in reference to the work of nature, such as it is used in organic farming or ecological agricultural systems.


Recycling in novel ecosystems

An endless stream of technological waste accumulates in different spatial configurations across the planet and turns into a predator in our soils, our streams, and our oceans. This idea was similarly expressed in 1954 by ecologist
Paul Sears Paul Bigelow Sears (December 17, 1891 – April 30, 1990) was an American ecologist and writer. He was born in Bucyrus, Ohio. Sears attended Ohio Wesleyan University (B.Sc. in Zoology, 1913; B.A. in Economics, 1914), the University of Nebraska at ...
: "We do not know whether to cherish the forest as a source of essential raw materials and other benefits or to remove it for the space it occupies. We expect a river to serve as both vein and artery carrying away waste but bringing usable material in the same channel. Nature long ago discarded the nonsense of carrying poisonous wastes and nutrients in the same vessels." Ecologists use population ecology to model contaminants as competitors or predators. Rachel Carson was an ecological pioneer in this area as her book '' Silent Spring'' inspired research into biomagification and brought to the world's attention the unseen pollutants moving into the food chains of the planet. In contrast to the planets natural ecosystems, technology (or
technoecosystems Novel ecosystems are human-built, modified, or engineered niches of the Anthropocene. They exist in places that have been altered in structure and function by human agency. Novel ecosystems are part of the human environment and niche (including urb ...
) is not reducing its impact on planetary resources. Only 7% of total plastic waste (adding up to millions upon millions of tons) is being recycled by industrial systems; the 93% that never makes it into the industrial recycling stream is presumably ''absorbed'' by natural recycling systems In contrast and over extensive lengths of time (billions of years) ecosystems have maintained a consistent balance with production roughly equaling respiratory consumption rates. The balanced recycling efficiency of nature means that production of decaying waste material has exceeded rates of recyclable consumption into food chains equal to the global stocks of fossilized fuels that escaped the chain of decomposition. Microplastics and
nanosilver Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silve ...
materials flowing and cycling through ecosystems from pollution and discarded technology are among a growing list of emerging ecological concerns. For example, unique assemblages of marine microbes have been found to digest plastic accumulating in the worlds oceans. Discarded technology is absorbed into soils and creates a new class of soils called
technosols A Technosol in the World Reference Base for Soil Resources is a Reference Soil Group that combines soils whose properties and pedogenesis are dominated by their technical origin. They contain either a significant amount of artefacts (something in t ...
. Human wastes in the Anthropocene are creating new systems of ecological recycling, novel ecosystems that have to contend with the
mercury cycle The mercury cycle is a biogeochemical cycle influenced by natural and anthropogenic processes that transform mercury through multiple chemical forms and environments. Mercury is present in the Earth's crust and in various forms on the Earth� ...
and other synthetic materials that are streaming into the biodegradation chain. Microorganisms have a significant role in the removal of synthetic organic compounds from the environment empowered by recycling mechanisms that have complex biodegradation pathways. The effect of synthetic materials, such as nanoparticles and microplastics, on ecological recycling systems is listed as one of the major concerns for ecosystem in this century.


Technological recycling

Recycling in human industrial systems (or
technoecosystem Novel ecosystems are human-built, modified, or engineered niches of the Anthropocene. They exist in places that have been altered in structure and function by human agency. Novel ecosystems are part of the human environment and niche (including urb ...
s) differs from ecological recycling in scale, complexity, and organization. Industrial recycling systems do not focus on the employment of ecological food webs to recycle waste back into different kinds of marketable goods, but primarily employ people and
technodiversity Novel ecosystems are human-built, modified, or engineered niches of the Anthropocene. They exist in places that have been altered in structure and function by human agency. Novel ecosystems are part of the human environment and niche (including urb ...
instead. Some researchers have questioned the premise behind these and other kinds of technological solutions under the banner of 'eco-efficiency' are limited in their capability, harmful to ecological processes, and dangerous in their hyped capabilities. Many technoecosystems are competitive and parasitic toward natural ecosystems. Food web or biologically based "recycling includes metabolic recycling (nutrient recovery, storage, etc.) and ecosystem recycling (leaching and ''in situ'' organic matter mineralization, either in the water column, in the sediment surface, or within the sediment)."


See also

* Plastic pollution


References


External links


Soil and Water Conservation SocietyBaltic Ecological Recycling Agriculture and Society
*
Dianna Cohen Dianna Cohen is an American visual artist and activist. She is the CEO and co-founder of the Plastic Pollution Coalition The Plastic Pollution Coalition (PPC) is an advocacy group and social movement organization which seeks to reduce plastic po ...

Tough truths about plastic pollution
on TED.com
Plastic pollution coalitionNutrient Cycling in Agroecosystems journal
*Nova Scotia Agricultural Colleg

{{Recycling Ecology Systems ecology Recycling Ecological economics