Recurrent Thalamo-cortical Resonance
   HOME

TheInfoList



OR:

Recurrent thalamo-cortical resonance or thalamocortical oscillation is an observed phenomenon of oscillatory neural activity between the
thalamus The thalamus (: thalami; from Greek language, Greek Wikt:θάλαμος, θάλαμος, "chamber") is a large mass of gray matter on the lateral wall of the third ventricle forming the wikt:dorsal, dorsal part of the diencephalon (a division of ...
and various cortical regions of the brain. It is proposed by Rodolfo Llinas and others as a theory for the integration of
sensory Sensory may refer to: Biology * Sensory ecology, how organisms obtain information about their environment * Sensory neuron, nerve cell responsible for transmitting information about external stimuli * Sensory perception, the process of acquiri ...
information into the whole of
perception Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous syste ...
in the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
. Thalamocortical oscillation is proposed to be a mechanism of
synchronization Synchronization is the coordination of events to operate a system in unison. For example, the Conductor (music), conductor of an orchestra keeps the orchestra synchronized or ''in time''. Systems that operate with all parts in synchrony are sa ...
between different cortical regions of the brain, a process known as temporal binding. This is possible through the existence of thalamocortical networks, groupings of thalamic and cortical cells that exhibit oscillatory properties. Thalamocortical oscillation involves the synchronous firing of thalamic and cortical neurons at specific frequencies; in the thalamocortical system, the exact frequencies depend on current brain state and mental activity. Fast frequencies in the
gamma Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
range are associated with much of conscious thought and active cognition. The thalamus in this system acts as both the gate for sensory input to the cortex as well as the site for feedback from cortical
pyramidal cell Pyramidal cells, or pyramidal neurons, are a type of multipolar neuron found in areas of the brain including the cerebral cortex, the hippocampus, and the amygdala. Pyramidal cells are the primary excitation units of the mammalian prefrontal cort ...
s, implying a processing role in sensory perception in addition to its function in directing information flow. The state of the brain, whether it be conscious, in
REM sleep Rapid eye movement sleep (REM sleep or REMS) is a unique phase of sleep in mammals (including humans) and birds, characterized by random rapid movement of the eyes, accompanied by low muscle tone throughout the body, and the propensity of the s ...
, or non-rapid eye movement sleep, changes how sensory information is gated through the thalamus.


Thalamocortical network structure

Thalamocortical networks consist of neurons in both the thalamus and cortex. The thalamic neurons are typically one of three types: thalamocortical, with
axon An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
s extending into the cortex, reticular, and thalamic
interneuron Interneurons (also called internuncial neurons, association neurons, connector neurons, or intermediate neurons) are neurons that are not specifically motor neurons or sensory neurons. Interneurons are the central nodes of neural circuits, enab ...
s. Thalamocortical neurons (TC) vary significantly in size, which is correlated with the depth to which they project into the cortex. These cells are limited in their outputs and seem to only connect to the
cortical layers The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. It is the largest site of neural integration in the central nervous system, and plays a key ...
and reticular thalamic neurons. Reticular neurons (RE), on the other hand, are highly interconnected and have their own intrinsic oscillatory properties. These neurons are capable of inhibiting thalamocortical activity via their direct connections to TCs. Corticothalamic neurons are the cortical neurons that TC neurons synapse on. These cells are glutaminergic excitatory cells that exhibit increasing activity as they become more depolarized. This activity is described as "bursting", firing in the gamma range at rates between 20 and 50 Hz.


Thalamic oscillation

The thalamocortical loop starts with oscillatory thalamic cells. These cells receive both sensory input from the body as well as input from feedback pathways in the brain. In a sense, these cells serve to integrate these multiple inputs by changing their inherent oscillatory properties in response to depolarization by these many different inputs. TC neurons exhibit
gamma oscillation A gamma wave or gamma rhythm is a pattern of neural oscillation in humans with a frequency between 30 and 100  Hz, the 40 Hz point being of particular interest. Gamma waves with frequencies between 30 and 70 hertz may be classified as low g ...
when depolarized to greater than −45 mV, and the frequency of oscillation is related to the degree of
depolarization In biology, depolarization or hypopolarization is a change within a cell (biology), cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolar ...
. This oscillation is caused by the activation of leaky P/Q-type
calcium channels A calcium channel is an ion channel which shows selective permeability to calcium ions. It is sometimes synonymous with voltage-gated calcium channel, which are a type of calcium channel regulated by changes in membrane potential. Some calcium chan ...
found in the
dendrites A dendrite (from Greek δένδρον ''déndron'', "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the electrochemical stimulation received from other neural cells to the cell body, or soma ...
of the cells. Because of the leaky channel properties, spontaneous, inherent oscillation can also occur independent of any rhythmic input as well, though the ramifications of this capability are not entirely known and may add nothing but background noise to the thalamocortical loop. The cortex provides feedback to the thalamus through links to dendrites of these thalamocortical cells and serves as the source of constant thalamic oscillation. Oscillatory behavior depends on the conscious/unconscious state of the brain. During active thinking,
electroencephalography Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignal, bio signals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in ...
reveals a strong appearance of gamma range oscillation from around 20–50 Hz.


Thalamocortical circuits

Thalamic cells synapse on
apical dendrite An apical dendrite is a dendrite that emerges from the apex of a pyramidal cell. Apical dendrites are one of two primary categories of dendrites, and they distinguish the pyramidal cells from spiny stellate cells in the cortices. Pyramidal cells ar ...
s of
pyramidal cells Pyramidal cells, or pyramidal neurons, are a type of multipolar neuron found in areas of the brain including the cerebral cortex, the hippocampus, and the amygdala. Pyramidal cells are the primary excitation units of the mammalian prefrontal cort ...
in the cortex. These pyramidal cells reciprocally
synapse In the nervous system, a synapse is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending o ...
back on thalamic neurons. Each loop is self-contained and modulated by sensory input. Inhibitory
interneurons Interneurons (also called internuncial neurons, association neurons, connector neurons, or intermediate neurons) are neurons that are not specifically motor neurons or sensory neurons. Interneurons are the central nodes of neural circuits, ena ...
both in the cortex and the reticular nucleus of the thalamus regulate circuit activity.


Inputs to thalamocortical system

The thalamus gates information into thalamocortical loops based on the source of the signal. There are two major sources for TC input: sensory perception and information about the current mental state. Cortical structures of external events or sensory data are referred to as specific inputs and enter into the ventrobasal thalamus at the "specific" thalamic nuclei. These neurons project to layer IV of the cortex. Similarly, nonspecific inputs provide context from internal state of the brain and enter into intralaminar "non-specific" nuclei in the centrolateral thalamus with axons in layers I and VI. Both types of TC neurons synapse on the pyramidal cortical cells which are thought to integrate the signals. In this way, outside sensory information is introduced into the current context of cognition.


Resonant columns

Studies involving manipulation of slices of
visual cortex The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalam ...
have shown that thalamocortical resonance from stimulated TCs induces the formation of coherent regions of similar electrical activity through vertical layers of the cortex. In essence this means that groupings of activated cortical cells form from the activation of these thalamic cells. These regions are columnar and are physically separated from adjacent resonance columns by areas of inhibited cortex between them. It is not known what the exact function of these columns is, although their formation occurs only when the cortical
white matter White matter refers to areas of the central nervous system that are mainly made up of myelinated axons, also called Nerve tract, tracts. Long thought to be passive tissue, white matter affects learning and brain functions, modulating the distr ...
afferents are stimulated at the gamma frequency range, implying an association with task-focused thought. The regions of inactive cortex that form between cortical columns were determined to be actively inhibited; administration of a
GABA GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
A blocker stops columnar development.


Temporal binding

Thalamocortical resonance is thought to be a potential explanation for coherence of perception in the brain. Temporal coincidence could occur through this mechanism by the integration of both specific and non-specific thalamic nuclei at the pyramidal cortical cell, as they both synapse on its apical dendrites. Feedback from the cortical cell back to the thalamic nuclei then relays the integrated signal. As there are numerous thalamocortical loops throughout the cortex, this process takes place simultaneously across many different regions of the brain during conscious perception. It is this ability to support large-scale synchronized events between remote brain regions that may provide for coherent perception. Altogether, the specific, ventrobasal neurons in the thalamus serve to introduce sensory input to a self-sustained feedback loop that is sustained by the non-specific, centrolateral TCs relaying information about the current cognitive state of the brain.


Relation to brain activity

Thalamocortical oscillation is thought to be responsible for the synchronization of neural activity between different regions of the cortex and is associated with the appearance of specific mental states depending on the frequency range of the most prominent oscillatory activity, gamma most associated with conscious, selective concentration on tasks,
learning Learning is the process of acquiring new understanding, knowledge, behaviors, skills, value (personal and cultural), values, Attitude (psychology), attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and ...
(
perceptual Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous syste ...
and
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
), and
short-term memory Short-term memory (or "primary" or "active memory") is the capacity for holding a small amount of information in an active, readily available state for a short interval. For example, short-term memory holds a phone number that has just been recit ...
.
Magnetoencephalography Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electric current, electrical currents occurring naturally in the human brain, brain, using very sensitive magn ...
(MEG) has been used to show that during conscious perception, gamma-band frequency electrical activity and thalamocortical resonance prominently occurs in the human brain. Absence of these gamma-band patterns correlates with nonconscious states and is characterized by the presence of lower-frequency oscillations instead.


Vision

The
lateral geniculate nucleus In neuroanatomy, the lateral geniculate nucleus (LGN; also called the lateral geniculate body or lateral geniculate complex) is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, Anatomical ter ...
, known as the major relay center from the sensory neurons in the eyes to the visual cortex, is found in the thalamus and has thalamocortical oscillatory properties, forming a feedback loop between the thalamus and the visual cortex. Sensory input can be seen to modulate the oscillatory patterns of thalamocortical activity while awake. In the case of vision, stimulation from light sources can be seen to cause direct changes in the amplitude of the thalamocortical oscillations as measured by EEG.


Sleep

Gamma wave thalamocortical oscillation is prominent during REM sleep, similar to the awakened, active brain. Contrary to the conscious state, however, it appears that sensory input may be blocked or gated from interfering with the intrinsic activity of the brain during REM. Measures of bulk electrical signalling in the brain by MEG show no impact of auditory stimuli on the gamma wave patterns; measurements on conscious subjects show a distinct modulation due to the auditory input. In this way, the thalamocortical system acts to gate the brain from external stimuli during REM. Non-rapid eye movement (NREM) sleep differs from REM in that gamma activity is no longer prominent, stepping aside for lower frequency oscillations. While electrical activity at gamma frequencies can occasionally be detected in NREM, it is infrequent and comes in bursts. The exact purpose of its appearance in NREM is not understood. In NREM sleep, thalamocortical oscillatory activity is still present, but the overall frequencies range from the slow (<1 Hz), to the
delta Delta commonly refers to: * Delta (letter) (Δ or δ), the fourth letter of the Greek alphabet * D (NATO phonetic alphabet: "Delta"), the fourth letter in the Latin alphabet * River delta, at a river mouth * Delta Air Lines, a major US carrier ...
(1–4 Hz), and
theta Theta (, ) uppercase Θ or ; lowercase θ or ; ''thē̂ta'' ; Modern: ''thī́ta'' ) is the eighth letter of the Greek alphabet, derived from the Phoenician letter Teth 𐤈. In the system of Greek numerals, it has a value of 9. Gree ...
(4–7 Hz) range. Synchronized theta oscillation has additionally been observed in the
hippocampus The hippocampus (: hippocampi; via Latin from Ancient Greek, Greek , 'seahorse'), also hippocampus proper, is a major component of the brain of humans and many other vertebrates. In the human brain the hippocampus, the dentate gyrus, and the ...
during NREM.


Alpha oscillations and attention

Gamma-range oscillations are not the only rhythms associated with conscious thought and activity. Thalamocortical alpha frequency oscillations have been noted in the human
occipital The occipital bone () is a cranial dermal bone and the main bone of the occiput (back and lower part of the skull). It is trapezoidal in shape and curved on itself like a shallow dish. The occipital bone lies over the occipital lobes of the cere ...
- parietal cortex. This activity could be originated by the pyramidal neurons in layer IV. It has been shown that alpha rhythms seem to be related to the focus of one's attention: external focus on visual tasks diminishes alpha activity while internal focus as in heavy
working memory Working memory is a cognitive system with a limited capacity that can Memory, hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term m ...
tasks show an increase in alpha magnitudes. This is contrary to gamma wave oscillatory frequencies which emerge in selective focus tasks.


Thalamocortical dysrhythmia

Thalamocortical dysrhythmia Thalamocortical dysrhythmia (TCD) is a theoretical framework in which neuroscientists try to explain the positive and negative symptoms induced by neuropsychiatric disorders like Parkinson's Disease, neurogenic pain, tinnitus, visual snow syndrom ...
(TCD) is a proposed explanation for certain cognitive disorders. It occurs upon the disruption of normal gamma-band electrical activity between the cortex and thalamic neurons during awakened, conscious states. This disorder is associated with diseases and conditions such as
neuropathic pain Neuropathic pain is pain caused by a lesion or disease of the somatosensory nervous system. Neuropathic pain may be associated with abnormal sensations called dysesthesia or pain from normally non-painful stimuli (allodynia). It may have continuo ...
,
tinnitus Tinnitus is a condition when a person hears a ringing sound or a different variety of sound when no corresponding external sound is present and other people cannot hear it. Nearly everyone experiences faint "normal tinnitus" in a completely ...
, and
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor system, motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become ...
and is characterized by the presence of unusually low-frequency resonance in the thalamocortical system. TCD is associated with disruption of many brain functions including
cognition Cognition is the "mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, ...
, sensory perception, and
motor control Motor control is the regulation of movements in organisms that possess a nervous system. Motor control includes conscious voluntary movements, subconscious muscle memory and involuntary reflexes, as well as instinctual taxes. To control ...
and occurs when thalamocortical neurons become inappropriately hyperpolarized, allowing T-type calcium channels to activate and the oscillatory properties of the thalamocortical neurons to change. A repeated burst of action potentials occurs at lower frequencies in the 4–10 Hz range. These bursts can be sustained by inhibition from the thalamic reticular nucleus and may cause an activation of cortical regions that are normally inhibited by gamma-band activity during resonance column formation. While the effect of the deviation from normal patterns of gamma oscillatory activity during conscious perception is not entirely settled, it is proposed that the phenomenon can be used to explain chronic pain in cases where there is no specific peripheral nerve damage.


See also

*
Neural oscillation Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by ...
*
Thalamo-cortico-thalamic circuits Thalamo-cortico-thalamic circuits consist of looped neural pathways that connect the thalamus to the cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in hu ...
*
Brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
*
Consciousness Consciousness, at its simplest, is awareness of a state or object, either internal to oneself or in one's external environment. However, its nature has led to millennia of analyses, explanations, and debate among philosophers, scientists, an ...
*
Perception Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous syste ...


References

{{Reflist, 2 Thalamus