Rectified 9-orthoplex
   HOME

TheInfoList



OR:

In nine-dimensional
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a rectified 9-simplex is a convex
uniform 9-polytope In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope Ridge (geometry), ridge being shared by exactly two 8-polytope Facet (mathematics), facets. A uniform 9-polytope ...
, being a
rectification Rectification has the following technical meanings: Mathematics * Rectification (geometry), truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points * Rectifiable curve, in mathematics * Recti ...
of the regular
9-orthoplex In geometry, a 9-orthoplex or 9- cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cell ''4-faces'', 5376 5-simplex ''5-faces'', 4608 6-simplex ''6-faces'', 2304 7-simplex ' ...
. There are 9 rectifications of the 9-orthoplex. Vertices of the rectified 9-orthoplex are located at the edge-centers of the 9-orthoplex. Vertices of the birectified 9-orthoplex are located in the triangular face centers of the 9-orthoplex. Vertices of the trirectified 9-orthoplex are located in the
tetrahedral In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
cell centers of the 9-orthoplex. These polytopes are part of a family 511
uniform 9-polytope In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope Ridge (geometry), ridge being shared by exactly two 8-polytope Facet (mathematics), facets. A uniform 9-polytope ...
s with BC9 symmetry.


Rectified 9-orthoplex

The ''rectified 9-orthoplex'' is the
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
for the
demienneractic honeycomb In geometry, the alternated hypercube honeycomb (or demicubic honeycomb) is a dimensional infinite series of Honeycomb (geometry), honeycombs, based on the hypercube honeycomb with an Alternation (geometry), alternation operation. It is given a Sc ...
. : or


Alternate names

* rectified enneacross (Acronym riv) (Jonathan Bowers)


Construction

There are two
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
s associated with the ''rectified 9-orthoplex'', one with the C9 or ,37Coxeter group, and a lower symmetry with two copies of 8-orthoplex facets, alternating, with the D9 or 6,1,1Coxeter group.


Cartesian coordinates

Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
for the vertices of a rectified 9-orthoplex, centered at the origin, edge length \sqrt are all permutations of: : (±1,±1,0,0,0,0,0,0,0)


Root vectors

Its 144 vertices represent the root vectors of the
simple Lie group In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...
D9. The vertices can be seen in 3
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
s, with the 36 vertices
rectified 8-simplex In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex. There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are locat ...
s cells on opposite sides, and 72 vertices of an expanded 8-simplex passing through the center. When combined with the 18 vertices of the 9-orthoplex, these vertices represent the 162 root vectors of the B9 and C9 simple
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s.


Images


Birectified 9-orthoplex


Alternate names

* Rectified 9-demicube * Birectified enneacross (Acronym brav) (Jonathan Bowers)


Images


Trirectified 9-orthoplex


Alternate names

* trirectified enneacross (Acronym tarv) (Jonathan Bowers)Klitzing (o3o3o3x3o3o3o3o4o - tarv)


Images


Notes


References

*
H.S.M. Coxeter Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated ...
: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) * x3o3o3o3o3o3o3o4o - vee, o3x3o3o3o3o3o3o4o - riv, o3o3x3o3o3o3o3o4o - brav, o3o3o3x3o3o3o3o4o - tarv, o3o3o3o3x3o3o3o4o - nav, o3o3o3o3o3x3o3o4o - tarn, o3o3o3o3o3o3x3o4o - barn, o3o3o3o3o3o3o3x4o - ren, o3o3o3o3o3o3o3o4x - enne


External links


Polytopes of Various Dimensions


{{Polytopes 9-polytopes