Structure
RSSs are made up of highly conservedCACAGTG
and nonamers are usually ACAAAAACC
. The nucleotides in bold are more highly conserved. The RAG1/RAG2 enzyme complex follows the 12-23 rule when joining V, D, and J segments, pairing 12-bp spacer RSSs to 23-bp spacer RSSs. This prevents two different genes coding for the same region from recombining (ex. V-V recombination). RSSs are located between V, D, and J segments of the germ-line DNA of maturing B and T lymphocytes and are permanently spliced out of the final Ig mRNA product after V(D)J recombination is complete.
Function
The RAG1/RAG2 enzyme complex recognizes the heptamer sequences flanking the V and J coding regions and nicks their 5' end, releasing the intervening DNA between the V and J coding regions. In the heavy-chain coding region of DNA, the RAG1/RAG2 enzyme complex recognizes the RSSs flanking the D and J segments and brings them together, forming a loop containing intervening DNA. The RAG1/RAG2 complex then introduces a nick at the 5' end of the RSS heptamers adjacent to the coding regions on both the D and J segments, permanently removing the loop of intervening DNA and creating a double-stranded break that is repaired by VDJ recombinase enzymes. This process is repeated for the joining of V to DJ. In light-chain rearrangement, only V and J segments are brought together.Related Diseases & Disorders
cRSS
Cryptic RSSs are gene sequences that resemble authentic RSSs and are occasionally mistaken for them by the RAG1/RAG2 enzyme complex. Recombining an RSS with a cRSS can lead toOmenn's Syndrome
Some infants born with autosomal recessive SCIDS lack a functional copies of the genes that code for the RAG1/RAG2 enzyme complex because of missense mutations. These infants will produce a non-functional RAG1/RAG2 enzyme complex that cannot recognize RSSs and therefore cannot initiate V(D)J recombination effectively. This disorder is characterized by a lack of functioning B and T cells.References
{{Reflist Immune system