In
mathematics, a multiplicative inverse or reciprocal for a
number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
''x'', denoted by 1/''x'' or ''x''
−1, is a number which when
multiplied by ''x'' yields the
multiplicative identity, 1. The multiplicative inverse of a
fraction
A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the
function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an
involution).
Multiplying by a number is the same as
dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).
The term ''reciprocal'' was in common use at least as far back as the third edition of ''
Encyclopædia Britannica
The ( Latin for "British Encyclopædia") is a general knowledge English-language encyclopaedia. It is published by Encyclopædia Britannica, Inc.; the company has existed since the 18th century, although it has changed ownership various ...
'' (1797) to describe two numbers whose product is 1; geometrical quantities in inverse proportion are described as in a 1570 translation of
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
's ''
Elements
Element or elements may refer to:
Science
* Chemical element, a pure substance of one type of atom
* Heating element, a device that generates heat by electrical resistance
* Orbital elements, parameters required to identify a specific orbit of ...
''.
In the phrase ''multiplicative inverse'', the qualifier ''multiplicative'' is often omitted and then tacitly understood (in contrast to the
additive inverse). Multiplicative inverses can be defined over many mathematical domains as well as numbers. In these cases it can happen that ; then "inverse" typically implies that an element is both a left and right
inverse
Inverse or invert may refer to:
Science and mathematics
* Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence
* Additive inverse (negation), the inverse of a number that, when ad ...
.
The notation ''f''
−1 is sometimes also used for the
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
of the function ''f'', which is for most functions not equal to the multiplicative inverse. For example, the multiplicative inverse is the
cosecant of x, and not the
inverse sine of ''x'' denoted by or . The terminology difference ''reciprocal'' versus ''inverse'' is not sufficient to make this distinction, since many authors prefer the opposite naming convention, probably for historical reasons (for example in
French
French (french: français(e), link=no) may refer to:
* Something of, from, or related to France
** French language, which originated in France, and its various dialects and accents
** French people, a nation and ethnic group identified with Franc ...
, the inverse function is preferably called the
bijection réciproque).
Examples and counterexamples
In the real numbers,
zero
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
does not have a reciprocal because no real number multiplied by 0 produces 1 (the product of any number with zero is zero). With the exception of zero, reciprocals of every
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
are real, reciprocals of every
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
are rational, and reciprocals of every
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
are complex. The property that every element other than zero has a multiplicative inverse is part of the definition of a
field, of which these are all examples. On the other hand, no
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
other than 1 and −1 has an integer reciprocal, and so the integers are not a field.
In
modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his bo ...
, the
modular multiplicative inverse of ''a'' is also defined: it is the number ''x'' such that . This multiplicative inverse exists
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
''a'' and ''n'' are
coprime. For example, the inverse of 3 modulo 11 is 4 because . The
extended Euclidean algorithm
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers ''a'' and ''b'', also the coefficients of Bézout's ...
may be used to compute it.
The
sedenions are an algebra in which every nonzero element has a multiplicative inverse, but which nonetheless has divisors of zero, that is, nonzero elements ''x'', ''y'' such that ''xy'' = 0.
A
square matrix has an inverse
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
its
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
has an inverse in the coefficient
ring. The linear map that has the matrix ''A''
−1 with respect to some base is then the inverse function of the map having ''A'' as matrix in the same base. Thus, the two distinct notions of the inverse of a function are strongly related in this case, but they still do not coincide, since the multiplicative inverse of ''Ax'' would be (''Ax'')
−1, not ''A''
−1x.
These two notions of an inverse function do sometimes coincide, for example for the function
where
is the
principal branch of the complex logarithm and