Reactive Nitrogen Species
   HOME

TheInfoList



OR:

Reactive nitrogen species (RNS) are a family of antimicrobial molecules derived from
nitric oxide Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes den ...
(•NO) and
superoxide In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of t ...
(O2•−) produced via the enzymatic activity of inducible nitric oxide synthase 2 ( NOS2) and
NADPH oxidase NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) is a membrane-bound enzyme complex that faces the extracellular space. It can be found in the plasma membrane as well as in the membranes of phagosomes used by neutrophil white ...
respectively. NOS2 is expressed primarily in
macrophage Macrophages (; abbreviated MPhi, φ, MΦ or MP) are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris and foreign substances, which do not have proteins that ...
s after induction by
cytokine Cytokines () are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are produced by a broad range of cells, including immune cells like macrophages, B cell, B lymphocytes, T cell, T lymphocytes ...
s and microbial products, notably
interferon-gamma Interferon gamma (IFNG or IFN-γ) is a dimerized soluble cytokine that is the only member of the type II class of interferons. The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. ...
(IFN-γ) and
lipopolysaccharide Lipopolysaccharide (LPS), now more commonly known as endotoxin, is a collective term for components of the outermost membrane of the cell envelope of gram-negative bacteria, such as '' E. coli'' and ''Salmonella'' with a common structural archit ...
(LPS). Reactive nitrogen species act together with
reactive oxygen species In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
(ROS) to damage cells, causing nitrosative stress. Therefore, these two species are often collectively referred to as ROS/RNS. Reactive nitrogen species are also continuously produced in plants as by-products of aerobic metabolism or in response to stress.


Types

RNS are produced in animals starting with the reaction of
nitric oxide Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes den ...
(•NO) with
superoxide In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of t ...
(O2•−) to form peroxynitrite (ONOO): * •NO (nitric oxide) + O2•− (superoxide) → ONOO (peroxynitrite) Superoxide anion (O2) is a reactive oxygen species that reacts quickly with nitric oxide (NO) in the vasculature. The reaction produces peroxynitrite and depletes the bioactivity of NO. This is important because NO is a key mediator in many important vascular functions including regulation of smooth muscle tone and blood pressure, platelet activation, and vascular cell signaling. Peroxynitrite itself is a highly reactive species which can directly react with various biological targets and components of the cell including lipids, thiols, amino acid residues, DNA bases, and low-molecular weight antioxidants. However, these reactions happen at a relatively slow rate. This slow reaction rate allows it to react more selectively throughout the cell. Peroxynitrite is able to get across cell membranes to some extent through anion channels. Additionally peroxynitrite can react with other molecules to form additional types of RNS including
nitrogen dioxide Nitrogen dioxide is a chemical compound with the formula . One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic, bent molecule with C2v point group symmetry. Industrially, is an intermediate in the s ...
(•NO2) and dinitrogen trioxide (N2O3) as well as other types of chemically reactive
free radicals In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired electron, unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemical reaction, chemi ...
. Important reactions involving RNS include: * ONOO + H+ → ONOOH ( peroxynitrous acid) → •NO2 (nitrogen dioxide) + •OH (
hydroxyl radical The hydroxyl radical, •HO, is the neutral form of the hydroxide ion (HO–). Hydroxyl radicals are highly reactive and consequently short-lived; however, they form an important part of radical chemistry. Most notably hydroxyl radicals are pr ...
) * ONOO + CO2 (
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
) → ONOOCO2 (nitrosoperoxycarbonate) * ONOOCO2 → •NO2 (nitrogen dioxide) + O=C(O•)O (carbonate radical) * •NO + •NO2 N2O3 (dinitrogen trioxide)


Biological targets

Peroxynitrite can react directly with proteins that contain transition metal centers. Therefore, it can modify proteins such as hemoglobin, myoglobin, and cytochrome c by oxidizing ferrous heme into its corresponding ferric forms. Peroxynitrite may also be able to change protein structure through the reaction with various amino acids in the peptide chain. The most common reaction with amino acids is cysteine oxidation. Another reaction is tyrosine nitration; however peroxynitrite does not react directly with tyrosine. Tyrosine reacts with other RNS that are produced by peroxynitrite. All of these reactions affect protein structure and function and thus have the potential to cause changes in the catalytic activity of enzymes, altered cytoskeletal organization, and impaired cell signal transduction.


See also

*
Reactive oxygen species In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
* Reactive sulfur species * Reactive carbonyl species


References

{{Reflist


External links


Short article on RN chemistry

Article on global RN trends
Nitrogen compounds Free radicals