
Reachability is a fundamental problem that appears in several different contexts: finite- and infinite-
state
State may refer to:
Arts, entertainment, and media Literature
* ''State Magazine'', a monthly magazine published by the U.S. Department of State
* ''The State'' (newspaper), a daily newspaper in Columbia, South Carolina, United States
* '' Our ...
concurrent systems,
computational models like
cellular automata and
Petri nets,
program analysis,
discrete and continuous systems, time critical systems,
hybrid system A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior – a system that can both ''flow'' (described by a differential equation) and ''jump'' (described by a state machine or automaton). Often, the ...
s,
rewriting systems,
probabilistic
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, ...
and
parametric systems, and
open systems modelled as
games
A game is a structured form of play, usually undertaken for entertainment or fun, and sometimes used as an educational tool. Many games are also considered to be work (such as professional players of spectator sports or games) or art (su ...
.
In general the reachability problem can be formulated as follows: ''Given a computational (potentially infinite state) system with a set of allowed rules or transformations, decide whether a certain state of a system is reachable from a given initial state of the system.''
Variants of the reachability problem may result from additional constraints on the initial or final states, specific requirement for reachability paths as well as for
iterative reachability or changing the questions into analysis of winning strategies in infinite games or unavoidability of some dynamics.
Typically, for a fixed system description given in some form (reduction rules,
systems of equations, logical formulas, etc.) a reachability problem consists of checking whether a given set of target states can be reached starting from a fixed set of initial states. The set of target states can be represented explicitly or via some implicit representation (e.g., a system of equations, a set of minimal elements with respect to some ordering on the states). Sophisticated quantitative and qualitative properties can often be reduced to basic reachability questions.
Decidability and complexity boundaries, algorithmic solutions, and efficient
heuristics are all important aspects to be considered in this context. Algorithmic solutions are often based on different combinations of exploration strategies, symbolic manipulations of sets of states, decomposition properties, or reduction to
linear programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is ...
problems, and they often benefit from approximations, abstractions, accelerations and extrapolation heuristics. Ad hoc solutions as well as solutions based on general purpose
constraint solvers and deduction engines are often combined in order to balance efficiency and flexibility.
Variants of reachability problems
Finite explicit graph
The reachability problem in an oriented graph described explicitly is NL-complete. Reingold, in a 2008 article, proved that the reachability problem for a non-oriented graph is in LOGSPACE.
In
model checking, reachability corresponds to a property of liveliness.
Finite implicit graph
In
planning
Planning is the process of thinking regarding the activities required to achieve a desired goal. Planning is based on foresight, the fundamental capacity for mental time travel. The evolution of forethought, the capacity to think ahead, is c ...
, more precisely in classical planning, one is interested in knowing if one can attain a state from an initial state from a description of actions. The description of actions defines a graph of implicit states, which is of exponential size in the size of the description.
In symbolic model checking, the model (the underlying graph) is described with the aid of a symbolic representation such as
binary decision diagrams.
Petri nets
The reachability problem in a Petri net is decidable. Since 1976, it is known that this problem is EXPSPACE-hard. There are results on how much to implement this problem in practice. In 2018, the problem was shown to be non-elementary.
Open problems
International Conference on Reachability Problems (RP)
The International Conference on Reachability Problems series, previously known as
Workshop on Reachability Problems, is an annual academic conference which gathers together researchers from diverse disciplines and backgrounds interested in reachability problems that appear in algebraic structures, computational models, hybrid systems, infinite games, logic and verification. The workshop tries to fill the gap between results obtained in different fields but sharing common mathematical structure or conceptual difficulties.
References
{{Reflist
Theory of computation