The Raschig–Hooker process is a
chemical process
In a scientific sense, a chemical process is a method or means of somehow changing one or more chemicals or chemical compounds. Such a chemical process can occur by itself or be caused by an outside force, and involves a chemical reaction of som ...
for the production of
chlorobenzene
Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C6H5Cl. This colorless, flammable liquid is a common solvent a ...
and
phenol
Phenol (also known as carbolic acid, phenolic acid, or benzenol) is an aromatic organic compound with the molecular formula . It is a white crystalline solid that is volatile and can catch fire.
The molecule consists of a phenyl group () ...
.
The Raschig–Hooker process was patented by
Friedrich Raschig, a German chemist and politician also known for the
Raschig process, the
Olin Raschig process and the
Raschig ring. He first begun to use this reaction in 1891 in order to manufacture phenol.

The main steps in this process are the production of chlorobenzene from
benzene
Benzene is an Organic compound, organic chemical compound with the Chemical formula#Molecular formula, molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar hexagonal Ring (chemistry), ring with one hyd ...
,
hydrochloric acid
Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
and
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, and the subsequent hydrolysis of chlorobenzene to phenol. The first step uses either a
copper
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
or
iron chloride catalyst and exposes the materials to air at 200–250°C.
In the second step, the resulting chlorobenzene is introduced to steam at 450°C over a silicon catalyst that hydrolyses the chlorobenzene, giving phenol and hydrogen chloride that can then be recycled back to the first step.
Due to the two step nature, the Raschig–Hooker process can be used to produce either chlorobenzene or phenol.
The Raschig–Hooker process's ability to make phenol makes it comparable to other methods, such as the
Dow and Bayer process, which also converts benzene into phenol. In fact, the ability to recycle the hydrogen chloride made the Raschig–Hooker process preferable to the Dow and Bayer process, which requires its sodium chloride product to be converted into chlorine and sodium hydroxide. The reaction, however, takes place at very high temperatures in a very acidic environment with hydrogen chloride vapor and therefore the industrial setting must use highly
corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
resistant equipment for the reaction. While the Raschig–Hooker process does recycle the hydrogen chloride it produces, its catalyst experiences carbon deposition and must be frequently regenerated. The harsh chemical environment, use of catalysts, and large energy consumption has made it a target for
green chemistry
Green chemistry, similar to sustainable chemistry or circular chemistry, is an area of chemistry and chemical engineering focused on the design of products and processes that minimize or eliminate the use and generation of hazardous substances. Wh ...
alternatives.
The Raschig–Hooker process suffers from selectivity issues in both steps. In the first step, the reaction is only run to 10% to 15% conversion to prevent the second addition of a chlorine atom to the desired chlorobenzene. Despite this, the overall selectivity of the reaction is 70% to 85%. This second addition can be reversed using the Hooker modification, though it is also costly. The second step shares the low conversion rate and high selectivity of the first step. The small amount conversion per reaction offsets the monetary benefit of recycling the hydrogen chloride due to the large initial cost of the reaction. Therefore, the Raschig–Hooker process needed to be run at high concentrations in large reactors to be industrially economical.
Due to its low productivity, this process is largely unused today. , every plant in the United States that was using the Raschig–Hooker process has been shut down, though it was still used by some plants in countries such as Argentina, India, Italy, and Poland. Rather than using the Raschig–Hooker process, some companies use the Hock or
cumene process
The cumene process (cumene-phenol process, Hock process) is an industrial process for synthesizing phenol and acetone from benzene and propylene. The term stems from cumene (isopropyl benzene), the intermediate material during the process. It ...
, which instead synthesizes
acetone
Acetone (2-propanone or dimethyl ketone) is an organic compound with the chemical formula, formula . It is the simplest and smallest ketone (). It is a colorless, highly Volatile organic compound, volatile, and flammable liquid with a charact ...
and phenol from benzene and propylene. This preferred process has dominated the market, especially as acetone is also a highly desired substance.
References
{{DEFAULTSORT:Raschig-Hooker Process
Chemical processes