
In the
mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
graph theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the Rado graph, Erdős–Rényi graph, or random graph is a
countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
graph that can be constructed (with
probability one) by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor
Richard Rado
Richard Rado FRS (28 April 1906 – 23 December 1989) was a German-born British mathematician whose research concerned combinatorics and graph theory. He was Jewish and left Germany to escape Nazi persecution. He earned two PhDs: in 1933 from th ...
,
Paul Erdős, and
Alfréd Rényi
Alfréd Rényi (20 March 1921 – 1 February 1970) was a Hungarian mathematician known for his work in probability theory, though he also made contributions in combinatorics, graph theory, and number theory.
Life
Rényi was born in Budapest ...
, mathematicians who studied it in the early 1960s; it appears even earlier in the work of . The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the
hereditarily finite set
In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to ...
s, by applying the
BIT predicate to the
binary representations of the
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s, or as an infinite
Paley graph
In mathematics, Paley graphs are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, ...
that has edges connecting pairs of
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s congruent to 1 mod 4 that are
quadratic residue
In number theory, an integer ''q'' is called a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; i.e., if there exists an integer ''x'' such that:
:x^2\equiv q \pmod.
Otherwise, ''q'' is called a quadratic non ...
s modulo each other.
Every finite or countably infinite graph is an
induced subgraph
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset.
Definit ...
of the Rado graph, and can be found as an induced subgraph by a
greedy algorithm
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locall ...
that builds up the subgraph one vertex at a time. The Rado graph is uniquely defined, among countable graphs, by an ''extension property'' that guarantees the correctness of this algorithm: no matter which vertices have already been chosen to form part of the induced subgraph, and no matter what pattern of adjacencies is needed to extend the subgraph by one more vertex, there will always exist another vertex with that pattern of adjacencies that the greedy algorithm can choose.
The Rado graph is highly symmetric: any isomorphism of its induced subgraphs can be extended to a symmetry of the whole graph.
The
first-order logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quanti ...
sentences that are true of the Rado graph are also true of
almost all
In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathem ...
random finite graphs, and the sentences that are false for the Rado graph are also false for almost all finite graphs. In
model theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the ...
, the Rado graph forms an example of a
saturated model
In mathematical logic, and particularly in its subfield model theory, a saturated model ''M'' is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is \al ...
of an
ω-categorical and
complete theory In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence \varphi, the theory T contains the sentence or its ...
.
History
The Rado graph was first constructed by in two ways, with vertices either the
hereditarily finite set
In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to ...
s or the natural numbers. (Strictly speaking Ackermann described a
directed graph
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs.
Definition
In formal terms, a directed graph is an ordered pai ...
, and the Rado graph is the corresponding undirected graph given by forgetting the directions on the edges.) constructed the Rado graph as the random graph on a countable number of points. They proved that it has infinitely many automorphisms, and their argument also shows that it is unique though they did not mention this explicitly. rediscovered the Rado graph as a
universal graph, and gave an explicit construction of it with vertex set the natural numbers. Rado's construction is essentially equivalent to one of Ackermann's constructions.
Constructions
Binary numbers
and constructed the Rado graph using the
BIT predicate as follows. They identified the vertices of the graph with the
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s 0, 1, 2, ...
An edge connects vertices
and
in the graph (where
) whenever the
th bit of the
binary
Binary may refer to:
Science and technology Mathematics
* Binary number, a representation of numbers using only two digits (0 and 1)
* Binary function, a function that takes two arguments
* Binary operation, a mathematical operation that ta ...
representation of
is nonzero. Thus, for instance, the neighbors of vertex 0 consist of all odd-numbered vertices, because the numbers whose 0th bit is nonzero are exactly the odd numbers. Vertex 1 has one smaller neighbor, vertex 0, as 1 is odd and vertex 0 is connected to all odd vertices. The larger neighbors of vertex 1 are all vertices with numbers congruent to 2 or 3 modulo 4, because those are exactly the numbers with a nonzero bit at index 1.
Random graph
The Rado graph arises
almost surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0 ...
in the
Erdős–Rényi model
In the mathematical field of graph theory, the Erdős–Rényi model is either of two closely related models for generating random graphs or the evolution of a random network. They are named after Hungarian mathematicians Paul Erdős and Alf ...
of a random graph on countably many vertices. Specifically, one may form an infinite graph by choosing, independently and with probability 1/2 for each pair of vertices, whether to connect the two vertices by an edge. With probability 1 the resulting graph is isomorphic to the Rado graph. This construction also works if any fixed probability
not equal to 0 or 1 is used in place of 1/2.
[See , Fact 1 and its proof.]
This result, shown by , justifies the
definite article
An article is any member of a class of dedicated words that are used with noun phrases to mark the identifiability of the referents of the noun phrases. The category of articles constitutes a part of speech.
In English, both "the" and "a(n)" ...
in the common alternative name "''the'' random graph" for the Rado graph. Repeatedly drawing a finite graph from the Erdős–Rényi model will in general lead to different graphs; however, when applied to a countably infinite graph, the model
almost always produces the same infinite graph.
For any graph generated randomly in this way, the
complement graph
In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement ...
can be obtained at the same time by reversing all the choices: including an edge when the first graph did not include the same edge, and vice versa. This construction of the complement graph is an instance of the same process of choosing randomly and independently whether to include each edge, so it also (with probability 1) generates the Rado graph. Therefore, the Rado graph is a
self-complementary graph.
Other constructions
In one of Ackermann's original 1937 constructions, the vertices of the Rado graph are indexed by the hereditarily finite sets, and there is an edge between two vertices exactly when one of the corresponding finite sets is a member of the other. A similar construction can be based on
Skolem's paradox, the fact that there exists a countable model for the first-order theory of sets. One can construct the Rado graph from such a model by creating a vertex for each set, with an edge connecting each pair of sets where one set in the pair is a member of the other.
The Rado graph may also be formed by a construction resembling that for
Paley graph
In mathematics, Paley graphs are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, ...
s, taking as the vertices of a graph all the
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s that are congruent to 1 modulo 4, and connecting two vertices by an edge whenever one of the two numbers is a
quadratic residue
In number theory, an integer ''q'' is called a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; i.e., if there exists an integer ''x'' such that:
:x^2\equiv q \pmod.
Otherwise, ''q'' is called a quadratic non ...
modulo the other. By
quadratic reciprocity
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard s ...
and the restriction of the vertices to primes congruent to 1 mod 4, this is a
symmetric relation
A symmetric relation is a type of binary relation. An example is the relation "is equal to", because if ''a'' = ''b'' is true then ''b'' = ''a'' is also true. Formally, a binary relation ''R'' over a set ''X'' is symmetric if:
:\forall a, b \in X ...
, so it defines an undirected graph, which turns out to be isomorphic to the Rado graph.
[
Another construction of the Rado graph shows that it is an infinite ]circulant graph
In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, but this term has other meanings.
Equivalent definitions
Cir ...
, with the integers as its vertices and with an edge between each two integers whose distance (the absolute value of their difference) belongs to a particular set . To construct the Rado graph in this way, may be chosen randomly, or by choosing the indicator function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x ...
of to be the concatenation of all finite binary sequence
A bitstream (or bit stream), also known as binary sequence, is a sequence of bits.
A bytestream is a sequence of bytes. Typically, each byte is an 8-bit quantity, and so the term octet stream is sometimes used interchangeably. An octet may ...
s.
The Rado graph can also be constructed as the block intersection graph
In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of ...
of an infinite block design
In combinatorial mathematics, a block design is an incidence structure consisting of a set together with a family of subsets known as ''blocks'', chosen such that frequency of the elements satisfies certain conditions making the collection of b ...
in which the number of points and the size of each block are countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
. It can also be constructed as the Fraïssé limit of the class of finite graphs.
Properties
Extension
The Rado graph satisfies the following extension property: for every two disjoint finite sets of vertices and , there exists a vertex outside both sets that is connected to all vertices in , but has no neighbors in .
For instance, with the binary-number definition of the Rado graph, let
Then the nonzero bits in the binary representation of cause it to be adjacent to everything in . However, has no nonzero bits in its binary representation corresponding to vertices in , and is so large that the th bit of every element of is zero. Thus, is not adjacent to any vertex in .
With the random-graph definition of the Rado graph, each vertex outside the union of and has probability of fulfilling the extension property, independently of the other vertices. Because there are infinitely many vertices to choose from, each with the same finite probability of success, the probability is one that there exists a vertex that fulfils the extension property. With the Paley graph definition, for any sets and , by the Chinese remainder theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of the ...
, the numbers that are quadratic residues modulo every prime in and nonresidues modulo every prime in form a periodic sequence, so by Dirichlet's theorem on primes in arithmetic progressions this number-theoretic graph has the extension property.
Induced subgraphs
The extension property can be used to build up isomorphic copies of any finite or countably infinite graph within the Rado graph, as induced subgraph
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset.
Definit ...
s.
To do so, order the vertices of , and add vertices in the same order to a partial copy of within the Rado graph.
At each step, the next vertex in will be adjacent to some set of vertices in that are earlier in the ordering of the vertices,
and non-adjacent to the remaining set of earlier vertices in .
By the extension property, the Rado graph will also have a vertex that is adjacent to all the vertices in the partial copy that correspond to members of ,
and non-adjacent to all the vertices in the partial copy that correspond to members of . Adding to the partial copy of produces a larger partial copy, with one more vertex.[, Proposition 6.]
This method forms the basis for a proof by induction, with the 0-vertex subgraph as its base case, that every finite or countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
graph is an induced subgraph of the Rado graph.[
]
Uniqueness
The Rado graph is, up to graph isomorphism
In graph theory, an isomorphism of graphs ''G'' and ''H'' is a bijection between the vertex sets of ''G'' and ''H''
: f \colon V(G) \to V(H)
such that any two vertices ''u'' and ''v'' of ''G'' are adjacent in ''G'' if and only if f(u) and f(v) ...
, the only countable graph with the extension property. For example, let and be two countable graphs with the extension property, let and be isomorphic finite induced subgraphs of and respectively, and let and be the first vertices in an enumeration of the vertices of and respectively that do not belong to and . Then, by applying the extension property twice, one can find isomorphic induced subgraphs and that include and together with all the vertices of the previous subgraphs. By repeating this process, one may build up a sequence of isomorphisms between induced subgraphs that eventually includes every vertex in and . Thus, by the back-and-forth method In mathematical logic, especially set theory and model theory, the back-and-forth method is a method for showing isomorphism between countably infinite structures satisfying specified conditions. In particular it can be used to prove that
* any ...
, and must be isomorphic.[.]
Because the graphs constructed by the random graph construction, binary number construction, and Paley graph construction are all countable graphs with the extension property, this argument shows that they are all isomorphic to each other.
Symmetry
Applying the back-and-forth construction to any two isomorphic finite subgraphs of the Rado graph extends their isomorphism to an automorphism of the entire Rado graph. The fact that every isomorphism of finite subgraphs extends to an automorphism of the whole graph is expressed by saying that the Rado graph is ''ultrahomogeneous''. In particular, there is an automorphism taking any ordered pair of adjacent vertices to any other such ordered pair, so the Rado graph is a symmetric graph.
The automorphism group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is th ...
of the Rado graph is a simple group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service.
The da ...
, whose number of elements is the cardinality of the continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \ma ...
. Every subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
of this group whose index
Index (or its plural form indices) may refer to:
Arts, entertainment, and media Fictional entities
* Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index''
* The Index, an item on a Halo megastru ...
is less than the cardinality of the continuum can be sandwiched between the pointwise stabilizer and the stabilizer of a finite set of vertices.
The construction of the Rado graph as an infinite circulant graph shows that its symmetry group includes automorphisms that generate a transitive infinite cyclic group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
. The difference set of this construction (the set of distances in the integers between adjacent vertices) can be constrained to include the difference 1, without affecting the correctness of this construction, from which it follows that the Rado graph contains an infinite Hamiltonian path
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
whose symmetries are a subgroup of the symmetries of the whole graph.
Robustness against finite changes
If a graph is formed from the Rado graph by deleting any finite number of edges or vertices, or adding a finite number of edges, the change does not affect the extension property of the graph. For any pair of sets and it is still possible to find a vertex in the modified graph that is adjacent to everything in and nonadjacent to everything in , by adding the modified parts of to and applying the extension property in the unmodified Rado graph. Therefore, any finite modification of this type results in a graph that is isomorphic to the Rado graph.
Partition
For any partition of the vertices of the Rado graph into two sets and , or more generally for any partition into finitely many subsets, at least one of the subgraphs induced by one of the partition sets is isomorphic to the whole Rado graph. gives the following short proof: if none of the parts induces a subgraph isomorphic to the Rado graph, they all fail to have the extension property, and one can find pairs of sets and that cannot be extended within each subgraph. But then, the union of the sets and the union of the sets would form a set that could not be extended in the whole graph, contradicting the Rado graph's extension property. This property of being isomorphic to one of the induced subgraphs of any partition is held by only three countably infinite undirected graphs: the Rado graph, the complete graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices ...
, and the empty graph
In the mathematical field of graph theory, the term "null graph" may refer either to the order- zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph").
Order-zero graph
The order-zero graph, , is ...
. and investigate infinite directed graph
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs.
Definition
In formal terms, a directed graph is an ordered pai ...
s with the same partition property; all are formed by choosing orientations for the edges of the complete graph or the Rado graph.
A related result concerns edge partitions instead of vertex partitions: for every partition of the edges of the Rado graph into finitely many sets, there is a subgraph isomorphic to the whole Rado graph that uses at most two of the colors. However, there may not necessarily exist an isomorphic subgraph that uses only one color of edges.
Model theory and 0-1 laws
used the Rado graph to prove a zero–one law for first-order statements in the logic of graphs. When a logical statement of this type is true or false for the Rado graph, it is also true or false (respectively) for almost all
In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathem ...
finite graphs.
First-order properties
The first-order language of graphs is the collection of well-formed sentences in mathematical logic formed from variables representing the vertices of graphs, universal and existential quantifiers, logical connective
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary ...
s, and predicates for equality and adjacency of vertices. For instance, the condition that a graph does not have any isolated vertices may be expressed by the sentence
where the symbol indicates the adjacency relation between two vertices.
This sentence is true for some graphs, and false for others; a graph is said to ''model'' , written , if is true of the vertices and adjacency relation of .
The extension property of the Rado graph may be expressed by a collection of first-order sentences , stating that for every choice of vertices in a set and vertices in a set , all distinct, there exists a vertex adjacent to everything in and nonadjacent to everything in . For instance, can be written as
Completeness
proved that the sentences , together with additional sentences stating that the adjacency relation is symmetric
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
and antireflexive
In mathematics, a binary relation ''R'' on a set ''X'' is reflexive if it relates every element of ''X'' to itself.
An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to ...
(that is, that a graph modeling these sentences is undirected and has no self-loops), are the axioms of a complete theory In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence \varphi, the theory T contains the sentence or its ...
. This means that, for each first-order sentence , exactly one of and its negation can be proven from these axioms.
Because the Rado graph models the extension axioms, it models all sentences in this theory.
In logic, a theory that has only one model (up to isomorphism) with a given infinite cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
is called -categorical. The fact that the Rado graph is the unique countable graph with the extension property implies that it is also the unique countable model for its theory. This uniqueness property of the Rado graph can be expressed by saying that the theory of the Rado graph is ω-categorical. Łoś and Vaught proved in 1954 that when a theory is –categorical (for some infinite cardinal ) and, in addition, has no finite models, then the theory must be complete. Therefore, Gaifman's theorem that the theory of the Rado graph is complete follows from the uniqueness of the Rado graph by the Łoś–Vaught test.
Finite graphs and computational complexity
As proved, the first-order sentences provable from the extension axioms and modeled by the Rado graph are exactly the sentences true for almost all
In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathem ...
random finite graphs. This means that if one chooses an -vertex graph uniformly at random among all graphs on labeled vertices, then the probability that such a sentence will be true for the chosen graph approaches one in the limit as approaches infinity. Symmetrically, the sentences that are not modeled by the Rado graph are false for almost all random finite graphs. It follows that every first-order sentence is either almost always true or almost always false for random finite graphs, and these two possibilities can be distinguished by determining whether the Rado graph models the sentence. Fagin's proof uses the compactness theorem
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally ...
.[; , Theorem 2.4.4, pp. 51–52.] Based on this equivalence, the theory of sentences modeled by the Rado graph has been called "the theory of the random graph" or "the almost sure theory of graphs".
Because of this 0-1 law, it is possible to test whether any particular first-order sentence is modeled by the Rado graph in a finite amount of time, by choosing a large enough value of and counting the number of -vertex graphs that model the sentence. However, here, "large enough" is at least exponential in the size of the sentence. For instance the extension axiom implies the existence of a -vertex clique
A clique ( AusE, CanE, or ), in the social sciences, is a group of individuals who interact with one another and share similar interests. Interacting with cliques is part of normative social development regardless of gender, ethnicity, or popula ...
, but a clique of that size exists with high probability only in random graphs of size exponential in .
It is unlikely that determining whether the Rado graph models a given sentence can be done more quickly than exponential time, as the problem is PSPACE-complete In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length ( polynomial space) and if every other problem that can be solved in polynomial space can ...
.
Saturated model
From the model theoretic point of view, the Rado graph is an example of a saturated model
In mathematical logic, and particularly in its subfield model theory, a saturated model ''M'' is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is \al ...
. This is just a logical formulation of the property that the Rado graph contains all finite graphs as induced subgraphs.
In this context, a type
Type may refer to:
Science and technology Computing
* Typing, producing text via a keyboard, typewriter, etc.
* Data type, collection of values used for computations.
* File type
* TYPE (DOS command), a command to display contents of a file.
* Ty ...
is a set of variables together with a collection of constraints on the values of some or all of the predicates determined by those variables; a complete type is a type that constrains all of the predicates determined by its variables. In the theory of graphs, the variables represent vertices and the predicates are the adjacencies between vertices, so a complete type specifies whether an edge is present or absent between every pair of vertices represented by the given variables. That is, a complete type specifies the subgraph that a particular set of vertex variables induces.
A saturated model is a model that realizes all of the types that have a number of variables at most equal to the cardinality of the model. The Rado graph has induced subgraphs of all finite or countably infinite types, so it is saturated.
Related concepts
Although the Rado graph is universal for induced subgraphs, it is not universal for isometric embeddings of graphs,
where an isometric embedding is a graph isomorphism which preserves distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
. The Rado graph has diameter
In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
two, and so any graph with larger diameter does not embed isometrically into it. has described a family of universal graphs for isometric embedding, one for each possible finite graph diameter; the graph in his family with diameter two is the Rado graph.
The Henson graphs are countable graphs (one for each positive integer ) that do not contain an -vertex clique
A clique ( AusE, CanE, or ), in the social sciences, is a group of individuals who interact with one another and share similar interests. Interacting with cliques is part of normative social development regardless of gender, ethnicity, or popula ...
, and are universal for -clique-free graphs. They can be constructed as induced subgraphs of the Rado graph. The Rado graph, the Henson graphs and their complements, disjoint unions of countably infinite cliques and their complements, and infinite disjoint unions of isomorphic finite cliques and their complements are the only possible countably infinite homogeneous graph In mathematics, a ''k''-ultrahomogeneous graph is a graph in which every isomorphism between two of its induced subgraphs of at most ''k'' vertices can be extended to an automorphism of the whole graph. A ''k''-homogeneous graph obeys a weakened v ...
s.
The universality property of the Rado graph can be extended to edge-colored graphs; that is, graphs in which the edges have been assigned to different color classes, but without the usual edge coloring
In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue ...
requirement that each color class form a matching. For any finite or countably infinite number of colors , there exists a unique countably-infinite -edge-colored graph such that every partial isomorphism of a -edge-colored finite graph can be extended to a full isomorphism. With this notation, the Rado graph is just . investigates the automorphism groups of this more general family of graphs.
It follows from the classical model theory considerations of constructing a saturated model that under the continuum hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that
or equivalently, that
In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent ...
CH, there is a universal graph with continuum many vertices. Of course, under CH, the continuum is equal to , the first uncountable cardinal. uses forcing
Forcing may refer to: Mathematics and science
* Forcing (mathematics), a technique for obtaining independence proofs for set theory
*Forcing (recursion theory), a modification of Paul Cohen's original set theoretic technique of forcing to deal with ...
to investigate universal graphs with many vertices and shows that even in the absence of CH, there may exist a universal graph of size . He also investigates analogous questions for higher cardinalities.
Notes
References
*
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
{{refend
Individual graphs
Random graphs
Infinite graphs