Radiofluorination
   HOME

TheInfoList



OR:

Radiofluorination is the process by which a
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
of
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
is attached to a
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
and is preferably performed by
nucleophilic substitution In chemistry, a nucleophilic substitution (SN) is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile) ...
using
nitro Nitro may refer to: Chemistry *Nitrogen, a chemical element and a gas except at very low temperatures, with which many compounds are formed: **Nitro compound, an organic compound containing one or more nitro functional groups, -NO2 **Nitro ligand ...
or
halogens The halogens () are a group (periodic table), group in the periodic table consisting of six chemically related chemical element, elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and ten ...
as
leaving groups Leaving or Leavin' may refer to: Film, theatre and television * Leaving (TV series), ''Leaving'' (TV series), a 1984–1985 UK series featuring Keith Barron and Susan Hampshire * Leaving (1997 film), ''Leaving'' (1997 film), a Japanese film sta ...
.
Fluorine-18 Fluorine-18 (18F, also called radiofluorine) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96.7% of the time and el ...
is the most common isotope used for this procedure. This is due to its 97%
positron The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
emission and relatively long 109.8 min half-life. The half-life allows for a long enough time to be incorporated into the molecule and be used without causing exceedingly harmful effects. This process has many applications especially with the use of
positron emission tomography Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, r ...
(PET) as the aforementioned low positron energy is able to yield a high resolution in PET imaging.


History

The first notable radiofluorination synthesis was performed in 1976 for the synthesis of Fluorine-18 labeled
fludeoxyglucose []Fluorodeoxyglucose (International Nonproprietary Name, INN), or fluorodeoxyglucose F 18 (United States Adopted Name, USAN and United States Pharmacopeia, USP), also commonly called fluorodeoxyglucose and abbreviated []FDG, 2-[]FDG o ...
. In the 1980s this molecule was discovered to accumulate in Neoplasm, tumors of cancer patients. Since this time, this molecule has become a standard in PET imaging of cancer, and currently the only
FDA The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food ...
-approved substance to do so. In recent years, research is being performed to find alternatives to the fludeoxyglucose molecule. These new molecules are bifunctional labeling agents that can attach to
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, re ...
or
peptides Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Dalton (unit), Da or more are called proteins. Chains of fewer t ...
to label not only cancer, but also
amyloid plaques Amyloid plaques (also known as neuritic plaques, amyloid beta plaques or senile plaques) are extracellular deposits of amyloid beta (Aβ) protein that present mainly in the grey matter of the brain. Degeneration (medical), Degenerative neuronal ...
and inflammatory processes.


Procedure

Due to the ongoing research involving radiofluorinated molecules and their various uses, the demand for suitable syntheses has increased over the years. In order for synthetic methods to be considered viable, the process must be rapid and efficient as well as compatible with the forms of 18F with are available. In many cases, the synthesis must also be capable of regio- and stereo-specificity. Typically, radiofluorinated products are synthesized using nucleophilic or
electrophilic substitution Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, aromatic. Aromatic substitution reactions are characteristic of aromatic compounds ...
processes. One classical method for radiofluorination is the Balz-Schiemann reaction, or a modified Balz-Schiemann reaction with sup>18FF. Electrophilic substitution reactions typically make use of sup>18FF2 as a precursor which can then be added to an array of molecules such as alkenes, aromatic rings, and carbanions 1 However, methods utilizing sup>18FF2 are at a disadvantage due to the loss 50% of the input activity in the form of sup>18FF. To facilitate these procedures the reaction may also be carried out within a microfluidic chamber.


Uses

One of the most popular uses of radiofluorination is its application in PET scans. Positron emission tomography (PET) is a widely used imaging technique in the field of
nuclear medicine Nuclear medicine (nuclear radiology, nucleology), is a medical specialty involving the application of radioactivity, radioactive substances in the diagnosis and treatment of disease. Nuclear imaging is, in a sense, ''radiology done inside out'', ...
. With applications in research and in diagnosis, a PET scan can be used to image tumors, diagnose brain disease, and monitor brain or heart function ,9,12 These images are created with the aid of radiotracers that emit positrons which decay via an annihilation reaction to generate two 510 KeV photons that are then detected and used to reconstruct images using the same software utilized in X-Ray CT units. The gamma rays are then emitted nearly 180 degrees from each other and their detection allows the ability to pinpoint the source, thus creating an image. One of the most popular isotopes used as a positron emitting radiotracer is fluorine-18. This isotope is particularly advantageous due to its short half-life of approximately 109.8 min, its decay being 97% positron emission, its ease of production, and its  energy being low (0.64 MeV). Therefore, the radiofluorination procedure is incorporates the radioactive isotope of choice in order to create the images. Another application in the field of radiofluorination chemistry lies in the field of
biofuel Biofuel is a fuel that is produced over a short time span from Biomass (energy), biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricu ...
s. Recent interest has been given to the exploration of lignocellulostic material as a
biofuel Biofuel is a fuel that is produced over a short time span from Biomass (energy), biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricu ...
source. Given that it is the most plentiful renewable carbon source in the
biosphere The biosphere (), also called the ecosphere (), is the worldwide sum of all ecosystems. It can also be termed the zone of life on the Earth. The biosphere (which is technically a spherical shell) is virtually a closed system with regard to mat ...
, it is a natural choice for this purpose. The composition consists of three elements—
hemicellulose A hemicellulose (also known as polyose) is one of a number of heteropolymers (matrix polysaccharides), such as arabinoxylans, present along with cellulose in almost all embryophyte, terrestrial plant cell walls. Cellulose is crystalline, strong, an ...
,
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
, and
lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidit ...
. It is the last of these three, lignin, that presents the greatest obstacle to the efficient use of such material as a feasible biofuel source. The recalcitrant chemical nature of the lignin molecule currently requires an extensive and expensive process to degrade for
bioethanol Ethanol fuel is fuel containing ethyl alcohol, the same type of alcohol as found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. Several common ethanol fuel mixtures are in use a ...
. Current research is being conducted to find more economical ways to breakdown this lignin barrier. This research will explore the use of radiofluorination with the fluorine-18 isotope to search for places in nature that lignin is being degraded. The radioactive fluorine will be attached to lignin-degradation products in order to search for enzymes in nature that breakdown lignin. This will help to make the process more efficient for use in biofuel production.


Applications with radiopharmaceuticals

Fluorine-18 is typically produced by proton bombardment of
oxygen-18 Oxygen-18 (, Ω) is a natural, stable isotope of oxygen and one of the environmental isotopes. is an important precursor for the production of fluorodeoxyglucose (FDG) used in positron emission tomography (PET). Generally, in the radiopharm ...
enriched water in a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
. Due to the relatively short half-life, the isotope must be quickly incorporated into a tracer molecule designed for the desired target. These
radiotracer A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide (a radioactive atom). By virtue of its radioactive decay, it can be used to ...
s generally fall into two main categories—labeled molecules normally used in the body such as water or glucose or labeled molecules that react with or bind to receptors within the body. One important application in the latter class is the attachment of the  molecule to a biologically active proteins and peptides, including antibodies and
antibody An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as pathogenic bacteria, bacteria and viruses, includin ...
fragments. This class of radiotracers is of particular interest due to their role in imaging the regulation of cellular growth and function. Consequently, radiolabeling these labeled biologically active proteins and peptides with fluorine-18 to image various aspects of nuclear medicinal purposes such as tumors and inflammatory processes is important in nuclear medicine. However, due to the chemically sensitive nature of proteins, the synthesis of radiofluorine-labeled proteins and peptides presents some formidable challenges. The harsh conditions needed for the addition of the  into the biomacromolecule can easily hinder its use in radiolabeling reactions. In order to overcome these obstacles, protein or peptide labeling can be performed through a prosthetic group or bifunctional labeling agent to which the radiofluorine has been attached. This molecule can then be conjugated to the protein or peptide under milder conditions. The three main categories of prosthetic groups are carboxyl-reactive, amino-reactive, and thiol-reactive. Of these three, the carboxyl-reactive group is the least utilized, and the amino-reactive is the most utilized. The thiol-reactive prosthetic groups are the newest class of the three. The choice of method by which the protein is labeled is dependent upon the structure. Thiol-reactive molecules can be used in cases where the amino-reactive prosthetic groups would not work. Below can be seen the structures and names of various prosthetic groups currently being used for protein and peptide labeling.


References

{{reflist Radiopharmaceuticals Halogenation reactions