Background
1978: the creation of S.Tu.R.P.
The idea of scientifically dating the shroud had first been proposed in the 1960s, but permission had been refused because the procedure at the time would have required the destruction of too much fabric (almost 0.05 sq m ≅ 0.5 sq ft). The development in the 1970s of new techniques for radio-carbon dating, which required much smaller quantities of source material, prompted the Roman Catholic Church to found the Shroud of Turin Research Project (S.Tu.R.P.), which involved about 30 scientists of various religious faiths, including non-Christians. The S.Tu.R.P. group initially planned to conduct a range of different studies on the cloth, including radio-carbon dating. A commission headed by chemist Robert H. Dinegar and physicist Harry E. Gove consulted numerous laboratories which were able at the time (1982) to carbon-date small fabric samples. The six labs that showed interest in performing the procedure fell into two categories, according to the method they utilised: * Two used aDisagreements between S.Tu.R.P. and candidate laboratories
In 1982, the S.Tu.R.P. group published the list of tests to be performed on the shroud; these aimed to identify how the image was impressed onto the cloth, to verify the relic's purported origin, and to identify better-suited conservation methods. However, a disagreement between the S.Tu.R.P. group and the candidate laboratories turned into a public relations rift: the S.Tu.R.P. group expected to perform the radiometric examination under its own aegis and after the other examinations had been completed, while the laboratories considered radio-carbon dating to be the prime test, which should be completed at the detriment of other tests, if necessary.The 1986 Turin protocol
A meeting with ecclesiastic authorities took place on September 29, 1986, to determine the way forward. In the end, a compromise solution was reached with the so-called "Turin protocol", which stated that: * carbon-dating would be the only test performed; * original and control samples, indistinguishable from each other, would be provided (The final protocol
The proposed changes to the Turin protocol sparked another heated debate among scientists, and the sampling procedure was postponed. On April 17, 1988, ten years after the S.Tu.R.P. project had been initiated, British Museum scientific director Michael Tite published in Nature the "final" protocol: * the laboratories at Oxford, Zürich, and Tucson would perform the test; * they would each receive one sample weighing 40 mg, sampled from a single portion of weave; * the laboratories would each receive two control samples, clearly distinguishable from the shroud sample; * samples would be delivered to the laboratories' representatives in Turin; * each test would be filmed; * there would be no comparison of results (nor communication) between laboratories until the results be certified as definitive, univocal, and complete; * the proportional counter method would not be used because it required gram quantities rather than milligram quantities of the shroud material. Among the most obvious differences between the final version of the protocol and the previous ones stands the decision to sample from a single location on the cloth. This is significant because, should the chosen portion be in any way not representative of the remainder of the shroud, the results would only be applicable to that portion of the cloth. A further, relevant difference was the deletion of the blind test, considered by some scholars as the very foundation of the scientific method. The blind-test method was abandoned because the distinctive three-to-one herringbone twill weave of the shroud could not be matched in the controls, and a laboratory could thus identify the shroud sample. Shredding the samples would not solve the problem, while making it much more difficult and wasteful to clean the samples properly.Testing process
Sampling
Samples were taken on April 21, 1988, in theCompletion of tests
Tucson performed the tests in May, Zürich in June, and Oxford in August, and communicated their results to the British Museum. On September 28, 1988, British Museum director and coordinator of the study Michael Tite communicated the official results to the Diocese of Turin and to theOfficial announcement
In a well-attended press conference on October 13, Cardinal Ballestrero announced the official results, i.e. that radio-carbon testing dated the shroud to a date of 1260–1390 CE, with 95% confidence. The official and complete report on the experiment was published in ''Nature''. The uncalibrated dates from the individual laboratories, with 1Criticisms of the test results
Medieval repairs
Although the quality of the radiocarbon testing itself is not questioned by experts, criticisms have been raised regarding the choice of the sample taken for testing, with suggestions that the sample may represent a medieval repair fragment rather than the image-bearing cloth. It is hypothesised that the sampled area was a medieval repair which was conducted by "invisible reweaving". Since the C14 dating, at least four articles have been published in scholarly sources contending that the samples used for the dating test may not have been representative of the whole shroud. These included an article by American chemistContrasting evidence
Raymond Rogers argued in the scientific journal ''Thermochimica Acta'' that the presence ofContamination by bacteria
Pictorial evidence dating from c. 1690 and 1842 indicates that the corner used for the dating and several similar evenly spaced areas along one edge of the cloth were handled each time the cloth was displayed, the traditional method being for it to be held suspended by a row of five bishops. Others contend that repeated handling of this kind greatly increased the likelihood of contamination by bacteria and bacterial residue compared to the newly discovered archaeological specimens for which carbon-14 dating was developed. Bacteria and associated residue (bacteria by-products and dead bacteria) carry additional carbon-14 that would skew the radiocarbon date toward the present. Rodger Sparks, a radiocarbon expert from New Zealand, had countered that an error of thirteen centuries stemming from bacterial contamination in the Middle Ages would have required a layer approximately doubling the sample weight. Because such material could be easily detected, fibers from the shroud were examined at the National Science Foundation Mass Spectrometry Center of Excellence at the University of Nebraska. Pyrolysis-mass-spectrometry examination failed to detect any form of bioplastic polymer on fibers from either non-image or image areas of the shroud. Additionally, laser-microprobe Raman analysis at Instruments SA, Inc. in Metuchen, New Jersey, also failed to detect any bioplastic polymer on shroud fibers. Harry Gove once hypothesised that a "bioplastic" bacterial contamination, which was unknown during the 1988 testing, could have rendered the tests inaccurate. He has however also acknowledged that the samples had been carefully cleaned with strong chemicals before testing. He noted that different cleaning procedures were employed by and within the three laboratories, and that even if some slight contamination remained, about two thirds of the sample would need to consist of modern material to swing the result away from a 1st-century date to a medieval date. He inspected the Arizona sample material before it was cleaned, and determined that no such gross amount of contamination was present even before the cleaning commenced.Contamination by reactive carbon
Others have suggested that the silver of the molten reliquary and the water used to douse the flames may have catalysed the airborne carbon into the cloth. The Russian Dmitri Kouznetsov, an archaeological biologist and chemist, claimed in 1994 to have managed to experimentally reproduce this purported enrichment of the cloth in ancient weaves, and published numerous articles on the subject between 1994 and 1996. Kouznetsov's results could not be replicated, and no actual experiments have been able to validate this theory, so far. Gian Marco Rinaldi and others proved that Kouznetsov never performed the experiments described in his papers, citing non-existent fonts and sources, including the museums from which he claimed to have obtained the samples of ancient weaves on which he performed the experiments. Kouznetsov was arrested in 1997 on American soil under allegations of accepting bribes by magazine editors to produce manufactured evidence and false reports. Jull, Donahue and Damon of the NSF Arizona Accelerator Mass Spectrometer Facility at the University of Arizona attempted to replicate the Kouznetsov experiment, and could find no evidence for the gross changes in age proposed by Kouznetsov et al. They concluded that the proposed carbon-enriching heat treatments were not capable of producing the claimed changes in the measured radiocarbon age of the linen, that the attacks by Kouznetsov et al. on the 1988 radiocarbon dating of the shroud "in general are unsubstantiated and incorrect," and that the "other aspects of the experiment are unverifiable and irreproducible."Contamination by smoke
In 2008 John Jackson of the Turin Shroud Center of Colorado proposed a new hypothesis – namely the possibility of more recent enrichment if carbon monoxide were to slowly interact with a fabric so as to deposit its enriched carbon into the fabric, interpenetrating into the fibrils that make up the cloth. Jackson proposed to test if this were actually possible. Christopher Ramsey, the director of the Oxford University Radiocarbon Accelerator Unit, took the theory seriously and agreed to collaborate with Jackson in testing a series of linen samples that could determine if the case for the Shroud's authenticity should be re-opened. Before conducting the tests, he told the BBC that "With the radiocarbon measurements and with all of the other evidence which we have about the Shroud, there does seem to be a conflict in the interpretation of the different evidence." Ramsey stressed that he would be surprised if the results of the 1988 tests were shown to be far out – especially "a thousand years wrong" – but he insisted that he was keeping an open mind. The results of the tests were to form part of a documentary on the Turin Shroud which was to be broadcast on BBC2. The producer of the 2008 documentary, David Rolfe, suggested that the quantity of carbon-14 found on the weave may have been significantly affected by the weather, the conservation methods employed throughout the centuries, as well as the volatile carbon generated by the fire that damaged the shroud while in Savoy custody atAccuracy
In 1994, J. A. Christen applied a robust statistical test to the radiocarbon data and concluded that the given age for the shroud is, from a statistical point of view, correct. In recent years several statistical analyses have been conducted on the radiocarbon dating data, attempting to draw some conclusions about the reliability of the C14 dating from studying the data rather than studying the shroud itself. They have all concluded that the data shows a lack of homogeneity, which might be due to unidentified abnormalities in the fabric tested, or else might be due to differences in the pre-testing cleaning processes used by the different laboratories. The most recent analysis concludes that the stated date range needs to be adjusted by up to 88 years in order to properly meet the requirement of "95% confidence". Specifically: * A 2013 paper by Riani et al stated that "The twelve results from the 1988 radio carbon dating of the Shroud of Turin show surprising heterogeneity." They also stated that "Our results indicate that, for whatever reasons, the structure of the TS is more complicated than that of the three fabrics with which it was compared." * A 2019 paper by Casabianca et al stated that: "A statistical analysis of the Nature article and the raw data strongly suggests that homogeneity is lacking in the data and that the procedure should be reconsidered." They also stated that: "Our statistical results do not imply that the medieval hypothesis of the age of the tested sample should be ruled out." They went on to conclude that: "The measurements made by the three laboratories on the TS sample suffer from a lack of precision which seriously affects the reliability of the 95% CE 1260–1390 interval. The statistical analyses, supported by the foreign material found by the laboratories, show the necessity of a new radiocarbon dating to compute a new reliable interval. … Without this re-analysis, it is not possible to affirm that the 1988 radiocarbon dating offers ‘conclusive evidence’ that the calendar age range is accurate and representative of the whole cloth." * In a 2020 paper by Bryan Walsh & Larry Schwalbe, the authors also note the "statistical heterogeneity of the Shroud data", and conclude that this might possibly have been caused by "some inherent variation was present in the carbon isotopic composition of the Shroud sample itself", or perhaps that "some difference in residual contamination may have occurred as a result of differences in the individual laboratories’ cleaning procedures." They also conclude that "If the Zurich and Tucson data were displaced upward by 88 adio-carbon yearsas shown in the figure all of the results would agree within the uncertainty observed. Indeed, if the magnitude of the “adjustment” were as small as ~10 adio-carbon years the χ2 analysis would confirm a statistical homogeneity assuming the uncertainties in the data did not change."See also
* Conservation of the Shroud of Turin *References
{{Shroud of Turin 1988 in science Radiocarbon dating Scientific skepticism Shroud of Turin