RNAP II
   HOME

TheInfoList



OR:

RNA polymerase II (RNAP II and Pol II) is a
multiprotein complex A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multidomain enzymes, in which multiple catalytic domains are found in a single polypeptide chain. Protein c ...
that transcribes
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
into precursors of
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
(mRNA) and most
small nuclear RNA Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the Cell nucleus#Splicing speckles, splicing speckles and Cajal body, Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approxi ...
(snRNA) and
microRNA Micro ribonucleic acid (microRNA, miRNA, μRNA) are small, single-stranded, non-coding RNA molecules containing 21–23 nucleotides. Found in plants, animals, and even some viruses, miRNAs are involved in RNA silencing and post-transcr ...
. It is one of the three RNAP
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s found in the nucleus of
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
cells. A 550
kDa The dalton or unified atomic mass unit (symbols: Da or u, respectively) is a unit of mass defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. It is a non-SI unit accepted f ...
complex of 12 subunits, RNAP II is the most studied type of
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template. Using the e ...
. A wide range of
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
are required for it to bind to upstream gene promoters and begin transcription.


Discovery

Early studies suggested a minimum of two RNAPs: one which synthesized rRNA in the
nucleolus The nucleolus (; : nucleoli ) is the largest structure in the cell nucleus, nucleus of eukaryote, eukaryotic cell (biology), cells. It is best known as the site of ribosome biogenesis. The nucleolus also participates in the formation of signa ...
, and one which synthesized other RNA in the
nucleoplasm The nucleoplasm, also known as karyoplasm, is the type of protoplasm that makes up the cell nucleus, the most prominent organelle of the eukaryotic cell. It is enclosed by the nuclear envelope, also known as the nuclear membrane. The nucleoplasm r ...
, part of the nucleus but outside the nucleolus. In 1969, biochemists Robert G. Roeder and William Rutter discovered there are total three distinct nuclear
RNA polymerases In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template. Using the en ...
, an additional RNAP that was responsible for transcription of some kind of RNA in the nucleoplasm. The finding was obtained by the use of
ion-exchange chromatography Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. It works on almost any kind of Charge (chemistry), charged molecule ...
via DEAE coated
Sephadex Sephadex is a cross-linked dextran gel used for gel filtration. It was launched by Pharmacia Pharmacia was a pharmaceutical and biotechnological company in Sweden that merged with the American pharmaceutical company Upjohn in 1995. History ...
beads. The technique separated the enzymes by the order of the corresponding elutions, Ι,ΙΙ,ΙΙΙ, by increasing the concentration of ammonium sulfate. The enzymes were named according to the order of the elutions, RNAP I, RNAP II, RNAP IΙI. This discovery demonstrated that there was an additional enzyme present in the nucleoplasm, which allowed for the differentiation between RNAP II and RNAP III. RNA polymerase II (RNAP2) undergoes regulated transcriptional pausing during early elongation. Various studies has shown that disruption of transcription elongation is implicated in
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
,
neurodegeneration A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their cell death, death. Neurodegenerative diseases include amyotrophic lateral sc ...
, HIV latency etc.


Subunits

The
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
core RNA polymerase II was first purified using transcription assays. The purified enzyme has typically 10–12 subunits (12 in humans and yeast) and is incapable of specific promoter recognition. Many subunit-subunit interactions are known. * DNA-directed RNA polymerase II subunit RPB1 – an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that in humans is encoded by the
POLR2A DNA-directed RNA polymerase II subunit RPB1, also known as RPB1, is an enzyme that is encoded by the ''POLR2A'' gene in humans. Function This gene encodes the largest subunit of RNA polymerase II, the polymerase responsible for synthesizing m ...
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
and in yeast is encoded by RPO21. RPB1 is the largest subunit of RNA polymerase II. It contains a carboxy terminal domain (CTD) composed of up to 52 heptapeptide repeats (YSPTSPS) that are essential for polymerase activity. The CTD was first discovered in the laboratory of C.J. Ingles at the University of Toronto and by JL Corden at
Johns Hopkins University The Johns Hopkins University (often abbreviated as Johns Hopkins, Hopkins, or JHU) is a private university, private research university in Baltimore, Maryland, United States. Founded in 1876 based on the European research institution model, J ...
. In combination with several other polymerase subunits, the RPB1 subunit forms the DNA binding domain of the polymerase, a groove in which the DNA template is transcribed into RNA. It strongly interacts with RPB8. * RPB2 ( POLR2B) – the second-largest subunit that in combination with at least two other polymerase subunits forms a structure within the polymerase that maintains contact in the active site of the enzyme between the DNA template and the newly synthesized RNA. * RPB3 (
POLR2C DNA-directed RNA polymerase II subunit RPB3 is an enzyme that in humans is encoded by the ''POLR2C'' gene. Function This gene encodes the third largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in ...
) – the third-largest subunit. Exists as a heterodimer with another polymerase subunit, POLR2J forming a core subassembly. RPB3 strongly interacts with RPB1-5, 7, 10–12. * RNA polymerase II subunit B4 (RPB4) – encoded by the POLR2D
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
is the fourth-largest subunit and may have a stress protective role. * RPB5 – In humans is encoded by the
POLR2E DNA-directed RNA polymerases I, II, and III subunit RPABC1 is a protein that in humans is encoded by the ''POLR2E'' gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a se ...
gene. Two molecules of this subunit are present in each RNA polymerase II. RPB5 strongly interacts with RPB1, RPB3, and RPB6. * RPB6 ( POLR2F) – forms a structure with at least two other subunits that stabilizes the transcribing polymerase on the DNA template. * RPB7 – encoded by POLR2G and may play a role in regulating polymerase function. RPB7 interacts strongly with RPB1 and RPB5. * RPB8 ( POLR2H) – interacts with subunits RPB1-3, 5, and 7. * RPB9 – The groove in which the DNA template is transcribed into RNA is composed of RPB9 (
POLR2I DNA-directed RNA polymerase II subunit RPB9 is an enzyme that in humans is encoded by the ''POLR2I'' gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucle ...
) and RPB1. * RPB10 – the product of gene POLR2L. It interacts with RPB1-3 and 5, and strongly with RPB3. * RPB11 – the RPB11 subunit is itself composed of three subunits in humans: POLR2J (RPB11-a), POLR2J2 (RPB11-b), and POLR2J3 (RPB11-c). * RPB12 – Also interacts with RPB3 is RPB12 ( POLR2K).


Assembly

RPB3 is involved in RNA polymerase II assembly. A subcomplex of RPB2 and RPB3 appears soon after subunit synthesis. This complex subsequently interacts with RPB1. RPB3, RPB5, and RPB7 interact with themselves to form homodimers, and RPB3 and RPB5 together are able to contact all of the other RPB subunits, except RPB9. Only RPB1 strongly binds to RPB5. The RPB1 subunit also contacts RPB7, RPB10, and more weakly but most efficiently with RPB8. Once RPB1 enters the complex, other subunits such as RPB5 and RPB7 can enter, where RPB5 binds to RPB6 and RPB8 and RPB3 brings in RPB10, RPB 11, and RPB12. RPB4 and RPB9 may enter once most of the complex is assembled. RPB4 forms a complex with RPB7.


Kinetics

Enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s can catalyze up to several million reactions per second. Enzyme rates depend on solution conditions and substrate concentration. Like other enzymes POLR2 has a saturation curve and a maximum velocity (''V''max). It has a ''K''m (substrate concentration required for one-half ''V''max) and a ''k''cat (the number of substrate molecules handled by one active site per second). The specificity constant is given by ''k''cat/''K''m. The theoretical maximum for the specificity constant is the diffusion limit of about 108 to 109 (''M''−1''s''−1), where every collision of the enzyme with its substrate results in catalysis. In yeast, mutation in the Trigger-Loop domain of the largest subunit can change the kinetics of the enzyme. Bacterial RNA polymerase, a relative of RNA Polymerase II, switches between inactivated and activated states by translocating back and forth along the DNA. Concentrations of TPsub>eq = 10 μM GTP, 10 μM UTP, 5 μM ATP and 2.5 μM CTP, produce a mean elongation rate, turnover number, of ~1 bp (NTP)−1 for bacterial RNAP, a relative of RNA polymerase II. RNA polymerase II undergoes extensive co-transcriptional pausing during transcription elongation. This pausing is especially pronounced at nucleosomes, and arises in part through the polymerase entering a transcriptionally incompetent backtracked state. The duration of these pauses ranges from seconds to minutes or longer, and exit from long-lived pauses can be promoted by elongation factors such as TFIIS. In turn, the transcription rate influences whether the histones of transcribed nucleosomes are evicted from chromatin, or reinserted behind the transcribing polymerase.


Alpha-Amanitin

RNA polymerase II is inhibited by α-Amanitin and other
amatoxin Amatoxins are a subgroup of at least nine related cyclic peptide toxins found in three genera of deadly poisonous mushrooms (''Amanita'', '' Galerina'' and '' Lepiota'') and one species of the genus '' Pholiotina''. Amatoxins are very potent, as li ...
s. α-Amanitin is a highly poisonous substance found in many mushrooms. The mushroom poison has different effects on each of the RNA Polymerases: I, II, III. RNAP I is completely unresponsive to the substance and will function normally while RNAP III has a moderate sensitivity. RNAP II, however, is completely inhibited by the toxin. Alpha-Amanitin inhibits RNAP II by strong interactions in the enzyme's "funnel", "cleft", and the key "bridge
α-helix An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the Protein secondary structure, secondary structure of proteins. It is al ...
" regions of the RPB-1 subunit.


Holoenzyme

RNA polymerase II holoenzyme is a form of
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
RNA polymerase II that is recruited to the promoters of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
-coding genes in living cells. It consists of RNA polymerase II, a subset of general
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding t ...
s, and regulatory proteins known as SRB proteins. Part of the assembly of the holoenzyme is referred to as the preinitiation complex, because its assembly takes place on the
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
promoter before the initiation of transcription. The
mediator complex Mediator is a multiprotein complex that functions as a transcriptional coactivator in all eukaryotes. It was discovered in 1990 in the lab of Roger D. Kornberg, recipient of the 2006 Nobel Prize in Chemistry. Mediator complexes interact with tr ...
acts as a bridge between RNA polymerase II and the transcription factors.


Control by chromatin structure

This is an outline of an example mechanism of yeast cells by which
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
structure and
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
post-translational modification In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translation (biolog ...
help regulate and record the transcription of
genes In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
by RNA polymerase II. This pathway gives examples of regulation at these points of transcription: * Pre-initiation (promotion by Bre1, histone modification) * Initiation (promotion by TFIIH, Pol II modification and promotion by COMPASS, histone modification) * Elongation (promotion by Set2, Histone Modification) This refers to various stages of the process as regulatory steps. It has not been proven that they are used for regulation, but is very likely they are. RNA Pol II elongation promoters can be summarised in 3 classes. #Drug/sequence-dependent arrest-affected factors (Various interfering proteins) #Chromatin structure-oriented factors (Histone posttranscriptional modifiers, e.g., Histone Methyltransferases) #RNA Pol II catalysis-improving factors (Various interfering proteins and Pol II cofactors; see RNA polymerase II).


Transcription mechanisms

* ''Chromatin structure oriented factors:''
''(HMTs (Histone MethylTransferases)):''
COMPASS§† – (COMplex of Proteins ASsociated with Set1) – Methylates lysine 4 of histone H3: Is responsible of repression/silencing of transcription. A normal part of cell growth and transcription regulation within RNAP II. * Set2 – Methylates lysine 36 of histone H3: Set2 is involved in regulation transcription elongation through its direct contact with the CTD.
(interesting irrelevant example: Dot1*‡ – Methylates lysine 79 of histone H3.) * Bre1 – Ubiquinates (adds
ubiquitin Ubiquitin is a small (8.6  kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
to) lysine 123 of histone H2B. Associated with pre-initiation and allowing RNA Pol II binding.


C-terminal Domain

The
C-terminus The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, carboxy tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein Proteins are large biomolecules and macromolecules that comp ...
of RPB1 is appended to form the C-terminal domain (CTD). The carboxy-terminal domain of RNA polymerase II typically consists of up to 52 repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The domain stretches from the core of the RNAPII enzyme to the exit channel, this placement is effective due to its inductions of "RNA processing reactions, through direct or indirect interactions with components of the RNA processing machinery". The CTD does not exist in RNA Polymerase I or RNA Polymerase III. The RNA Polymerase CTD was discovered first in the laboratory of C. J. Ingles at the University of Toronto and also in the laboratory of J Corden at Johns Hopkins University during the processes of sequencing the DNA encoding the RPB1 subunit of RNA polymerase from yeast and mice respectively. Other proteins often bind the C-terminal domain of RNA polymerase in order to activate polymerase activity. It is the protein domain that is involved in the
initiation Initiation is a rite of passage marking entrance or acceptance into a group or society. It could also be a formal admission to adulthood in a community or one of its formal components. In an extended sense, it can also signify a transformatio ...
of transcription, the capping of the
RNA transcript Transcription is the process of copying a segment of DNA into RNA for the purpose of gene expression. Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA). Other segments of DNA are transc ...
, and attachment to the
spliceosome A spliceosome is a large ribonucleoprotein (RNP) complex found primarily within the nucleus of eukaryotic cells. The spliceosome is assembled from small nuclear RNAs ( snRNA) and numerous proteins. Small nuclear RNA (snRNA) molecules bind to sp ...
for
RNA splicing RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
.


Phosphorylation of the CTD

RNA Polymerase II exists in two forms unphosphorylated and phosphorylated, IIA and IIO respectively. The transition between the two forms facilitates different functions for transcription. The
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
of CTD is catalyzed by one of the six general transcription factors, TFIIH. TFIIH serves two purposes: one is to unwind the DNA at the transcription start site and the other is to phosphorylate. The form polymerase IIA joins the preinitiation complex, this is suggested because IIA binds with higher affinity to the TBP ( TATA-box binding protein), the subunit of the general transcription factor
TFIID Transcription factor II D (TFIID) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters ...
, than polymerase IIO form. The form polymerase IIO facilitates the elongation of the RNA chain. The method for the elongation initiation is done by the phosphorylation of
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
at position 5 (Ser5), via TFIIH. The newly phosphorylated Ser5 recruits enzymes to cap the 5' end of the newly synthesized RNA and the "3' processing factors to poly(A) sites". Once the second serine is phosphorylated, Ser2, elongation is activated. In order to terminate elongation dephosphorylation must occur. Once the domain is completely dephosphorylated the RNAP II enzyme is "recycled" and catalyzes the same process with another initiation site.


Transcription coupled recombinational repair

Oxidative DNA damage may block RNA polymerase II transcription and cause strand breaks. An RNA templated transcription-associated recombination process has been described that can protect against DNA damage. During the G1/G0 stages of the
cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
, cells exhibit assembly of homologous recombination factors at double-strand breaks within actively transcribed regions. It appears that transcription is coupled to repair of DNA double-strand breaks by RNA templated homologous recombination. This repair process efficiently and accurately rejoins double-strand breaks in
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
s being actively transcribed by RNA polymerase II.


See also

*
Eukaryotic transcription Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Un ...
*
Post-transcriptional modification Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, f ...
*
RNA polymerase I RNA polymerase 1 (also known as Pol I) is, in higher eukaryotes, the polymerase that only transcribes ribosomal RNA (but not 5S rRNA, which is synthesized by RNA polymerase III), a type of RNA that accounts for over 50% of the total RNA synthesiz ...
*
RNA polymerase II holoenzyme RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. It consists of RNA polymerase II, a subset of general transcription factors, and regulatory proteins ...
*
RNA polymerase III In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose ex ...
*
Transcription (genetics) Transcription is the process of copying a segment of DNA into RNA for the purpose of gene expression. Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA). Other segments of DNA are transc ...


References


External links


More information at Berkeley National Lab
(
Wayback Machine The Wayback Machine is a digital archive of the World Wide Web founded by Internet Archive, an American nonprofit organization based in San Francisco, California. Launched for public access in 2001, the service allows users to go "back in ...
copy) * {{DEFAULTSORT:Rna Polymerase Ii EC 2.7.7 Proteins Gene expression