Working principle
Resolution below the diffraction-limit
In RESOLFT the area where molecules reside in state A (bright state) can be made arbitrarily small despite the diffraction-limit. * One has to illuminate the sample inhomogeneously so that an isolated zero intensity point is created. This can be achieved e.g. by interference. * At low intensities (lower than the blue line in the image) most marker molecules are in the bright state, if the intensity is above, most markers are in the dark state. Upon weak illumination we see that the area where molecules remain in state A is still quite large because the illumination is so low that most molecules reside in state A. The shape of the illumination profile does not need to be altered. Increasing the illumination brightness already results in a smaller area where the intensity is below the amount for efficient switching to the dark state. Consequently, also the area where molecules can reside in state A is diminished. The (fluorescence) signal during a following readout originates from a very small spot and one can obtain very sharp images. In the RESOLFT concept, the resolution can be approximated by , whereby is the characteristic intensity required for saturating the transition (half of the molecules remain in state A and half in state B), and denotes the intensity applied. If the minima are produced by focusing optics with a numerical aperture , the minimal distance at which two identical objects can be discerned is which can be regarded as an extension of Abbe’s equation. The diffraction-unlimited nature of the RESOLFT family of concepts is reflected by the fact that the minimal resolvable distance can be continuously decreased by increasing . Hence the quest for nanoscale resolution comes down to maximizing this quantity. This is possible by increasing or by lowering .Variants
Different processes are used when switching the molecular states. However, all have in common that at least two distinguishable states are used. Typically the fluorescence property used marks the distinction of the states, however this is not essential, as absorption or scattering properties could also be exploited.STED Microscopy
(Main article STED microscopy) Within the STED microscopy (STimulated Emission Depletion microscopy) a fluorescent dye molecule is driven between its electronic ground state and its excited state while sending out fluorescence photons. This is the standard operation mode in fluorescence microscopy and depicts state A. In state B the dye is permanently kept in its electronic ground state throughGSD microscopy
(Main article GSD microscopy) GSD microscopy (Ground State Depletion microscopy) also uses fluorescent markers. In state A, the molecule can freely be driven between the ground and the first excited state and fluorescence can be sent out. In the dark state B the ground state of the molecule is depopulated, a transition to a long lived excited state takes place from which fluorescence is not emitted. As long as the molecule is in the dark state, it's not available for cycling between ground and excited state, fluorescence is hence turned off.SPEM and SSIM
SPEM (Saturated Pattern Excitation Microscopy) and SSIM (Saturated Structured Illumination Microscopy) are exploiting the RESOLFT concept using saturated excitation to produce "negative" images, i.e. fluorescence occurs from everywhere except at a very small region around the geometrical focus of the microscope. Also non point-like patterns are used for illumination. Mathematical image reconstruction is necessary to obtain positive images again.RESOLFT with switchable proteins
Some fluorescent proteins can be switched on and off by light of an appropriate wavelength. They can be used in a RESOLFT-type microscope. During illumination with light, these proteins change their conformation. In the process they gain or lose their ability to emit fluorescence. The fluorescing state corresponds to state A, the non-fluorescing to state B and the RESOLFT concept applies again. The reversible transition (e.g. from B back to A) takes place either spontaneously or again driven by light. Inducing conformational changes in proteins can be achieved already at much lower switching light intensities as compared to stimulated emission or ground state depletion (some W/cm2). In combination with 4Pi microscopy images with isotropic resolution below 40 nm have been taken of living cells at low light levels.RESOLFT with switchable organic dyes
Just as with proteins, also some organic dyes can change their structure upon illumination. The ability to fluoresce of such organic dyes can be turned on and off through visible light. Again the applied light intensities can be quite low (some 100 W/cm2).References
{{reflist Optical microscopy techniques