A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a
multipole expansion of a more complex structure reflecting various orders of complexity.
Mathematical definition
The quadrupole moment tensor ''Q'' is a rank-two
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
—3×3 matrix. There are several definitions, but it is normally stated in the
traceless form (i.e.
). The quadrupole moment tensor has thus nine components, but because of transposition symmetry and
zero-trace property, in this form only five of these are independent.
For a discrete system of
point charges or masses in the case of a
gravitational quadrupole, each with charge
, or mass
, and position
relative to the coordinate system origin, the components of the ''Q'' matrix are defined by:
:
The indices
run over the
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
and
is the
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 ...
. This means that
must be equal, up to sign, to distances from the point to
mutually perpendicular
hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
s for the Kronecker delta to equal 1.
In the non-traceless form, the quadrupole moment is sometimes stated as:
:
with this form seeing some usage in the literature regarding the
fast multipole method. Conversion between these two forms can be easily achieved using a detracing operator.
For a continuous system with charge density, or mass density,
, the components of Q are defined by integral over the Cartesian space r:
:
As with any multipole moment, if a lower-order moment,
monopole or
dipole
In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways:
*An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system ...
in this case, is non-zero, then the value of the quadrupole moment depends on the choice of the
coordinate origin. For example, a
dipole
In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways:
*An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system ...
of two opposite-sign, same-strength point charges, which has no monopole moment, can have a nonzero quadrupole moment if the origin is shifted away from the center of the configuration exactly between the two charges; or the quadrupole moment can be reduced to zero with the origin at the center. In contrast, if the monopole and dipole moments vanish, but the quadrupole moment does not, e.g. four same-strength charges, arranged in a square, with alternating signs, then the quadrupole moment is coordinate independent.
If each charge is the source of a "
potential" field, like the
electric or
gravitational field, the contribution to the field's
potential from the quadrupole moment is:
:
where R is a vector with origin in the system of charges and R̂ is the unit vector in the direction of R. That is to say,
for
are the Cartesian components of the unit vector pointing from the origin to the field point. Here,
is a constant that depends on the type of field, and the units being used.
Electric quadrupole

A simple example of an electric quadrupole consists of alternating positive and negative charges, arranged on the corners of a square. The monopole moment (just the total charge) of this arrangement is zero. Similarly, the
dipole moment is zero, regardless of the coordinate origin that has been chosen. But the quadrupole moment of the arrangement in the diagram cannot be reduced to zero, regardless of where we place the coordinate origin. The
electric potential
The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
of an electric charge quadrupole is given by
:
where
is the
electric permittivity, and
follows the definition above.
Alternatively, other sources include the factor of one half in the
tensor itself, such that:
:
, and
:
which makes more explicit the connection to
Legendre polynomials which result from the
multipole expansion, namely here
Generalization: higher multipoles
An extreme generalization ("point
octopole") would be: Eight alternating point charges at the eight corners of a
parallelepiped
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term '' rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. In Euclid ...
, e.g., of a cube with edge length ''a''. The "octopole moment" of this arrangement would correspond, in the "octopole limit"
to a nonzero diagonal tensor of order three. Still higher multipoles, e.g. of order
, would be obtained by dipolar (quadrupolar, octopolar, ...) arrangements of point dipoles (quadrupoles, octopoles, ...), not point monopoles, of lower order, e.g.,
.
Magnetic quadrupole

All known magnetic sources give dipole fields. However, it is possible to make a magnetic quadrupole by placing four identical bar magnets perpendicular to each other such that the north pole of one is next to the south of the other. Such a configuration cancels the dipole moment and gives a quadrupole moment, and its field will decrease at large distances faster than that of a dipole.
An example of a magnetic quadrupole, involving permanent magnets, is depicted on the right.
Electromagnet
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the ...
s of similar conceptual design (called
quadrupole magnets) are commonly used to focus
beams of charged particles in
particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies, and to contain them in well-defined particle beam, beams.
Large accelerators are used for fun ...
s and beam transport lines, a method known as
strong focusing. There are four steel pole tips, two opposing magnetic north poles and two opposing magnetic south poles. The steel is magnetized by a large
electric current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movin ...
that flows in the coils of tubing wrapped around the poles.
A changing magnetic quadrupole moment produces
electromagnetic radiation
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
.
Gravitational quadrupole
The mass quadrupole is analogous to the electric charge quadrupole, where the charge density is simply replaced by the mass density and a negative sign is added because the masses are always positive and the force is attractive. The gravitational potential is then expressed as:
:
For example, because the Earth is rotating, it is oblate (flattened at the poles). This gives it a nonzero quadrupole moment. While the contribution to the Earth's gravitational field from this quadrupole is extremely important for artificial satellites close to Earth, it is less important for the Moon because the
term falls quickly.
The mass quadrupole moment is also important in
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
because, if it changes in time, it can produce
gravitational radiation, similar to the electromagnetic radiation produced by oscillating electric or magnetic dipoles and higher multipoles. However, only quadrupole and higher moments can radiate gravitationally. The mass monopole represents the total mass-energy in a system, which is conserved—thus it gives off no radiation. Similarly, the mass dipole corresponds to the center of mass of a system and its first derivative represents momentum which is also a conserved quantity so the mass dipole also emits no radiation. The mass quadrupole, however, can change in time, and is the lowest-order contribution to gravitational radiation.
The simplest and most important example of a radiating system is a pair of mass points with equal masses orbiting each other on a circular orbit, an approximation to e.g. special case of binary
black hole
A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can defo ...
s. Since the dipole moment is constant, we can for convenience place the coordinate origin right between the two points. Then the dipole moment will be zero, and if we also scale the coordinates so that the points are at unit distance from the center, in opposite direction, the system's quadrupole moment will then simply be
:
where M is the mass of each point, and
are components of the (unit) position vector of one of the points. As they orbit, this x-vector will rotate, which means that it will have a nonzero first, and also the second time derivative (this is of course true regardless the choice of the coordinate system). Therefore the system will radiate gravitational waves. Energy lost in this way was first inferred in the changing period of the
Hulse–Taylor binary, a pulsar in orbit with another neutron star of similar mass.
Just as electric charge and current multipoles contribute to the electromagnetic field, mass and mass-current multipoles contribute to the gravitational field in general relativity, causing the so-called
gravitomagnetic effects. Changing mass-current multipoles can also give off gravitational radiation. However, contributions from the current multipoles will typically be much smaller than that of the mass quadrupole.
See also
*
Multipole expansion
*
Multipole moments
*
Solid harmonics
*
Axial multipole moments
*
Cylindrical multipole moments
*
Spherical multipole moments
*
Laplace expansion
*
Legendre polynomials
*
Quadrupole ion trap
*
Quadrupole mass analyzer
*
Multipolar exchange interaction
Magnetic materials with strong spin-orbit interaction, such as: LaFeAsO, PrFe4P12, YbRu2Ge2, UO2, NpO2, Ce1−xLaxB6, URu2Si2 and many other compounds, are found to have magnetic ordering constituted by high rank multipoles, e.g. quadruple, octopl ...
*
Star quad cable
*
Magnetic lens
*
Quadrupole formula In general relativity, the quadrupole formula describes the rate at which gravitational waves are emitted from a system of masses based on the change of the (mass) quadrupole moment. The formula reads
: \bar_(t,r) = \frac \ddot_(t-r/c),
where \b ...
References
{{Reflist
External links
Multipole expansion
Electromagnetism
Gravity
Moment (physics)