Pyroprocessing (from
Greek Πυρος = ''fire'') is a process in which materials are subjected to high temperatures (typically over 800 °C) in order to bring about a chemical or physical change. Pyroprocessing includes such terms as
ore-roasting,
calcination
Calcination is thermal treatment of a solid chemical compound (e.g. mixed carbonate ores) whereby the compound is raised to high temperature without melting under restricted supply of ambient oxygen (i.e. gaseous O2 fraction of air), generally f ...
and
sintering
Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
. Equipment for pyroprocessing includes
kiln
A kiln is a thermally insulated chamber, a type of oven, that produces temperatures sufficient to complete some process, such as hardening, drying, or Chemical Changes, chemical changes. Kilns have been used for millennia to turn objects m ...
s,
electric arc furnace
An electric arc furnace (EAF) is a Industrial furnace, furnace that heats material by means of an electric arc.
Industrial arc furnaces range in size from small units of approximately one-tonne capacity (used in foundry, foundries for producin ...
s and
reverberatory furnace
A reverberatory furnace is a metallurgy, metallurgical or process Metallurgical furnace, furnace that isolates the material being processed from contact with the fuel, but not from contact with combustion gases. The term ''reverberation'' is use ...
s.
Cement manufacturing is a very common example of pyroprocessing. The raw material mix (
raw meal) is fed to a kiln where pyroprocessing takes place. As with most industries, pyroprocessing is the most energy-intensive part of the industrial process.
Recycling used nuclear fuel through pyroprocessing
Argonne National Laboratory
Argonne National Laboratory is a Federally funded research and development centers, federally funded research and development center in Lemont, Illinois, Lemont, Illinois, United States. Founded in 1946, the laboratory is owned by the United Sta ...
pioneered the development of pyrochemical processing, or pyroprocessing, a high-temperature method of recycling reactor waste into fuel, demonstrating it paired with the
EBR-II and then proposed commercializing it in the
Integral Fast Reactor. The latter was cancelled by the Clinton Administration in 1994.
[
] In 2016,
Argonne National Laboratory
Argonne National Laboratory is a Federally funded research and development centers, federally funded research and development center in Lemont, Illinois, Lemont, Illinois, United States. Founded in 1946, the laboratory is owned by the United Sta ...
researchers are developing and refining several pyroprocessing technologies for both light water and fast reactors, with most based on
electrorefining rather than conventional wet-chemical/
PUREX, to improve the technologies’ commercial viability by increasing their process efficiency and scalability.
Animations of the processing technology are also available.
Pyroprocessing of nuclear fuel rods, as an alternative to nuclear reprocessing, only attempts to combine separated plutonium with other, such as neptunium, americium, or curium. Theoretically, you could still reuse mixed, pyroprocessed plutonium to generate nuclear power, but it wouldn’t be pure enough for other uses.
In South Korea due to the historical
Section 123 Agreement between ROK and the U.S, neither enrichment nor PUREX related reprocessing were permitted, with researchers therefore increasingly viewing the "proliferation resistant" pyroprocessing cycle, as the solution for the nation's growing spent fuel inventory, in 2017 forming a collaboration with the U.S and Japan to advance the economics of the process. In 2019, proponents of
molten salt reactor (MSR) fuel cycles, frequently argue pairing the uncommercialized MSR with the pyroprocessing fuel cycle, as the MSR fuel is already in molten salt form, eliminating two process conversion steps, that of to-and-from metallic fuel, that both the commercially proposed IFR would have required and its antecedent physically demonstrated, when pyroprocessing was fielded in the
EBR-II.
References
{{Reflist
Chemical processes