HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a pyramid () is a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
formed by connecting a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
al base and a point, called the apex. Each base edge and apex form a triangle, called a ''lateral face''. It is a conic solid with polygonal base. A pyramid with an base has vertices, faces, and
edges Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
. All pyramids are self-dual. A right pyramid has its apex directly above the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
of its base. Nonright pyramids are called oblique pyramids. A regular pyramid has a
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
base and is usually implied to be a ''right pyramid''. When unspecified, a pyramid is usually assumed to be a ''regular''
square pyramid In geometry, a square pyramid is a pyramid having a square base. If the apex is perpendicularly above the center of the square, it is a right square pyramid, and has symmetry. If all edge lengths are equal, it is an equilateral square pyramid ...
, like the physical
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrila ...
structures. A
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
-based pyramid is more often called a
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
. Among oblique pyramids, like acute and obtuse triangles, a pyramid can be called ''acute'' if its apex is above the interior of the base and ''obtuse'' if its apex is above the exterior of the base. A right-angled pyramid has its apex above an edge or vertex of the base. In a tetrahedron these qualifiers change based on which face is considered the base. Pyramids are a class of the
prismatoid In geometry, a prismatoid is a polyhedron whose vertices all lie in two parallel planes. Its lateral faces can be trapezoids or triangles. If both planes have the same number of vertices, and the lateral faces are either parallelograms or trapez ...
s. Pyramids can be doubled into
bipyramid A (symmetric) -gonal bipyramid or dipyramid is a polyhedron formed by joining an -gonal pyramid and its mirror image base-to-base. An -gonal bipyramid has triangle faces, edges, and vertices. The "-gonal" in the name of a bipyramid does ...
s by adding a second offset point on the other side of the base plane.


Right pyramids with a regular base

A right pyramid with a regular base has isosceles triangle sides, with symmetry is C''n''v or ,''n'' with order 2''n''. It can be given an extended
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
( ) ∨ , representing a point, ( ), joined (orthogonally offset) to a
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
, . A join operation creates a new edge between all pairs of vertices of the two joined figures. The trigonal or triangular pyramid with all
equilateral triangle In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
faces becomes the
regular The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrum ...
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
, one of the
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s. A lower symmetry case of the triangular pyramid is C3v, which has an equilateral triangle base, and 3 identical isosceles triangle sides. The square and pentagonal pyramids can also be composed of regular convex polygons, in which case they are
Johnson solid In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johns ...
s. If all edges of a square pyramid (or any convex polyhedron) are
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
to a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
so that the average position of the tangential points are at the center of the sphere, then the pyramid is said to be
canonical The adjective canonical is applied in many contexts to mean "according to the canon" the standard, rule or primary source that is accepted as authoritative for the body of knowledge or literature in that context. In mathematics, "canonical examp ...
, and it forms half of a regular
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at e ...
. Pyramids with a hexagon or higher base must be composed of isosceles triangles. A hexagonal pyramid with equilateral triangles would be a completely flat figure, and a heptagonal or higher would have the triangles not meet at all.


Right star pyramids

Right pyramids with regular star polygon bases are called star pyramids.. For example, the pentagrammic pyramid has a
pentagram A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle aro ...
base and 5 intersecting triangle sides. :


Right pyramids with an irregular base

A right pyramid can be named as ( )∨P, where ( ) is the apex point, ∨ is a join operator, and P is a base polygon. An isosceles triangle right tetrahedron can be written as ( )∨  )∨as the join of a point to an
isosceles triangle In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter versio ...
base, as  )∨( )�� or ∨ as the join (orthogonal offsets) of two orthogonal segments, a
digonal disphenoid In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
, containing 4 isosceles triangle faces. It has C1v symmetry from two different base-apex orientations, and C2v in its full symmetry. A
rectangular In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containin ...
right pyramid, written as ( )∨ and a
rhombic Rhombic may refer to: * Rhombus, a quadrilateral whose four sides all have the same length (often called a diamond) *Rhombic antenna, a broadband directional antenna most commonly used on shortwave frequencies * polyhedra formed from rhombuses, suc ...
pyramid, as ( )∨ both have symmetry C2v.


Volume

The
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
of a pyramid (also any cone) is V = \tfrac bh, where ''b'' is the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
of the base and ''h'' the height from the base to the apex. This works for any polygon, regular or non-regular, and any location of the apex, provided that ''h'' is measured as the
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
distance from the plane containing the base. In 499 AD
Aryabhata Aryabhata ( ISO: ) or Aryabhata I (476–550 CE) was an Indian mathematician and astronomer of the classical age of Indian mathematics and Indian astronomy. He flourished in the Gupta Era and produced works such as the '' Aryabhatiya'' (whi ...
, a
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
-
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either o ...
from the classical age of
Indian mathematics Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupt ...
and
Indian astronomy Astronomy has long history in Indian subcontinent stretching from pre-historic to modern times. Some of the earliest roots of Indian astronomy can be dated to the period of Indus Valley civilisation or earlier. Astronomy later developed as a di ...
, used this method in the '' Aryabhatiya'' (section 2.6). The formula can be formally proved using calculus. By similarity, the ''linear'' dimensions of a cross-section parallel to the base increase linearly from the apex to the base. The scaling factor (proportionality factor) is 1 - \tfrac, or \tfrac, where ''h'' is the height and ''y'' is the perpendicular distance from the plane of the base to the cross-section. Since the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
of any cross-section is proportional to the square of the shape's scaling factor, the area of a cross-section at height ''y'' is b \tfrac, or since both ''b'' and ''h'' are constants, \tfrac (h - y)^2. The volume is given by the
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
:\frac \int_0^h (h-y)^2 \, dy = \frac (h-y)^3 \bigg, _0^h = \tfracbh. The same equation, V = \tfrac bh, also holds for cones with any base. This can be proven by an argument similar to the one above; see volume of a cone. For example, the volume of a pyramid whose base is an ''n''-sided
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
with side length ''s'' and whose height is ''h'' is :V = \frachs^2 \cot\frac. The formula can also be derived exactly without calculus for pyramids with rectangular bases. Consider a unit cube. Draw lines from the center of the cube to each of the 8 vertices. This partitions the cube into 6 equal square pyramids of base area 1 and height 1/2. Each pyramid clearly has volume of 1/6. From this we deduce that pyramid volume = height × base area / 3. Next, expand the cube uniformly in three directions by unequal amounts so that the resulting rectangular solid edges are ''a'', ''b'' and ''c'', with solid volume ''abc''. Each of the 6 pyramids within are likewise expanded. And each pyramid has the same volume ''abc''/6. Since pairs of pyramids have heights ''a''/2, ''b''/2 and ''c''/2, we see that pyramid volume = height × base area / 3 again. When the side triangles are equilateral, the formula for the volume is :V = \fracns^3\cot\left(\frac\right) \sqrt. This formula only applies for ''n'' = 2, 3, 4 and 5; and it also covers the case ''n'' = 6, for which the volume equals zero (i.e., the pyramid height is zero).


Surface area

The
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
of a pyramid is SA = B + \tfracPL, where ''B'' is the base area, ''P'' is the base
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pr ...
, and the slant height L = \sqrt, where ''h'' is the pyramid altitude and ''r'' is the
inradius In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter ...
of the base.


Centroid

The
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
of a pyramid is located on the line segment that connects the apex to the centroid of the base. For a solid pyramid, the centroid is 1/4 the distance from the base to the apex.


''n''-dimensional pyramids

A 2-dimensional pyramid is a triangle, formed by a base edge connected to a noncolinear point called an apex. A 4-dimensional pyramid is called a
polyhedral pyramid In geometry, a pyramid () is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a ''lateral face''. It is a conic solid with polygonal base. A pyramid with an b ...
, constructed by a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
in a 3-space hyperplane of 4-space with another point off that hyperplane. Higher-dimensional pyramids are constructed similarly. The family of simplices represent pyramids in any dimension, increasing from
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
,
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
,
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
, 5-simplex, etc. A n-dimensional simplex has the minimum ''n+1'' vertices, with all pairs of vertices connected by
edges Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
, all triples of vertices defining faces, all quadruples of points defining tetrahedral cells, etc.


Polyhedral pyramid

In 4-dimensional
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a polyhedral pyramid is a
4-polytope In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces ( polygons), ...
constructed by a base
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
cell and an apex point. The lateral facets are pyramid cells, each constructed by one face of the base polyhedron and the apex. The vertices and edges of polyhedral pyramids form examples of apex graphs, graphs formed by adding one vertex (the apex) to a
planar graph In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cro ...
(the graph of the base). The
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
of a polyhedral pyramid is another polyhedral pyramid, with a dual base. The regular
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
(or 4-
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
) is an example of a ''tetrahedral pyramid''. Uniform polyhedra with circumradii less than 1 can be make polyhedral pyramids with regular tetrahedral sides. A polyhedron with ''v'' vertices, ''e'' edges, and ''f'' faces can be the base on a polyhedral pyramid with ''v+1'' vertices, ''e+v'' edges, ''f+e'' faces, and ''1+f'' cells. A 4D ''polyhedral pyramid'' with axial symmetry can be visualized in 3D with a
Schlegel diagram In geometry, a Schlegel diagram is a projection of a polytope from \mathbb^d into \mathbb^ through a point just outside one of its facets. The resulting entity is a polytopal subdivision of the facet in \mathbb^ that, together with the ori ...
—a 3D projection that places the apex at the center of the base polyhedron. Any convex 4-polytope can be divided into polyhedral pyramids by adding an interior point and creating one pyramid from each facet to the center point. This can be useful for computing volumes. The 4-dimensional ''hypervolume'' of a polyhedral pyramid is 1/4 of the volume of the base polyhedron times its perpendicular height, compared to the area of a triangle being 1/2 the length of the base times the height and the volume of a pyramid being 1/3 the area of the base times the height. The 3-dimensional ''surface volume'' of a polyhedral pyramid is SV=B+\tfracAL, where ''B'' is the base volume, ''A'' is the base surface area, and L is the slant height (height of the lateral pyramidal cells) L = \sqrt, where ''h'' is the height and ''r'' is the inradius.


See also

*
Bipyramid A (symmetric) -gonal bipyramid or dipyramid is a polyhedron formed by joining an -gonal pyramid and its mirror image base-to-base. An -gonal bipyramid has triangle faces, edges, and vertices. The "-gonal" in the name of a bipyramid does ...
*
Cone (geometry) A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines ...
* Trigonal pyramid (chemistry) *
Frustum In geometry, a (from the Latin for "morsel"; plural: ''frusta'' or ''frustums'') is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting this solid. In the case of a pyramid, the base faces are ...


References


External links

* {{Authority control Polyhedra Self-dual polyhedra Prismatoid polyhedra Pyramid (geometry) Geometric shapes